
0018-9162/00/$10.00 © 2000 IEEE28 Computer

SPEC CPU2000: Measuring
CPU Performance in the
New Millennium

C
omputers perennially become more
powerful, as do the software applica-
tions that run on them, and it seems
almost human nature to want the biggest
and fastest toy we can afford. But how

do you know if it is? Even if your application never
does any I/O, it’s not just the speed of the CPU that
dictates performance—cache, main memory, and
compilers also play a role—and different software
applications have differing performance requirements.
And whom do you trust to provide this information?

The Standard Performance Evaluation Corporation
(SPEC) is a nonprofit consortium whose members
include hardware vendors, software vendors, univer-
sities, customers, and consultants. SPEC’s mission is to
develop technically credible and objective component-
and system-level benchmarks for multiple operating
systems and environments, including high-performance
numeric computing, Web servers, and graphical sub-
systems. Members agree on benchmark suites that are
derived from real-world applications so that both com-
puter designers and computer purchasers can make
decisions on the basis of realistic workloads. By license
agreement, members agree to run and report results as
specified by each benchmark suite.

On June 30, 2000, SPEC retired the CPU95 bench-
mark suite. Its replacement is CPU2000, a new CPU
benchmark suite with 19 applications that have never
before been in a SPEC CPU suite. By continually evolv-
ing these benchmarks, SPEC aims to keep pace with
the breakneck speed of technological innovation. But

how does SPEC develop a benchmark suite and what
do these benchmarks do? We can get a sense of the
process by looking over SPEC’s shoulders on one spe-
cific day in the benchmark development process.

SPEC BENCHATHON
It is 6 a.m. on a cool Thursday morning in February

1999. A Compaq employee prepares to shut off the
alarm at SPEC headquarters in Manassas, Virginia, and
start the day. But he finds that the alarm is already off,
because two IBM employees are still inside from the
night before. A weeklong SPEC ritual is in progress: A
subcommittee is in town for a “benchathon,” and tech-
nical activity is happening at all hours. The Compaq
employee goes to the back room, which is about 85
degrees Fahrenheit (30 degrees Celsius), thanks to its
collection of workstations by Sun, HP, Siemens, Intel,
SGI, Compaq, and IBM. He opens the window to the
cool air, and opens windows on his workstations to
review the results of running Kit 60 of what will even-
tually be known as SPEC CPU2000. (SPEC will release
it 10 months later, after building Kit 98.)

The primary goal at this stage is portability for the
candidate benchmarks. As other subcommittee mem-
bers arrive, the Compaq employee updates the Porter’s
Progress spreadsheet in preparation for today’s meet-
ing. As of this Thursday of the benchathon week, the
spreadsheet shows test results for

• 34 candidate benchmarks,
• 18 platforms from seven hardware vendors (11

John L.
Henning
Compaq
Computer
Corp.

C O M P U T I N G P R A C T I C E S

The SPEC consortium’s mission is
to develop technically credible and
objective benchmarks so that both
computer designers and purchasers
can make decisions on the basis of
realistic workloads.

with 32-bit and seven with 64-bit address spaces),
and

• 11 versions of Unix (three of them Linux) and
two versions of Windows NT.

SPEC tests a wide variety of systems, although there
are basically only two operating system families rep-
resented at this benchathon: Unix and NT. SPEC relies
on the efforts of those who choose to participate and
cannot mandate participation for any platform.

Unfortunately, only 19 of 34 candidate benchmarks
are successful on all platforms. Portability is difficult
because SPEC CPU suites are not abstracted loop ker-
nels but are programs for real-world problems, with
real-world portability challenges. Portability challenges
can be roughly categorized by source code language.

Fortran. The Fortran-77 applications are the easiest
to port because the language contains relatively few
machine-dependent features, and the ANSI standard is
more than 20 years old. Nevertheless, there are issues.
For example, a particular application has 47,134 lines
of code, 123 source files, and hard-to-debug wrong
answers when optimization is enabled for one SPEC
member’s compiler. Later, the compiler will be blamed,
the application will be exonerated, and the 200.sixtrack
benchmark will ship with CPU2000.

Several F77 applications allocate 200 megabytes
of memory. When the allocation is static, a member
complains that executables take too much disk space;
when it is dynamic, another member’s OS stack lim-

its are exceeded. Eventually, SPEC will choose
dynamic allocation but will allow static allocation
for those who need it.

The Fortran-90 applications are more difficult to
port because F90 implementations are less common
and less mature than F77 implementations. One appli-
cation author is a “language lawyer:” He aggressively
uses as many features as he can from the Fortran-90
standard. In February 1999, only three platforms suc-
ceed on his application. Later, it will work on all tested
F90 compilers, and the author of 187.facerec will be
proud that he uncovered bugs in many of these com-
pilers. But facerec itself will also be adjusted (see the
“Comparable Work” sidebar).

C and C++. The C applications are harder to port
than the ones in either Fortran dialect. The portabil-
ity issues are not uncommon: How big is a long? How
big is a pointer? Does this platform implement cal-
loc? Is it little endian or big endian? But the appli-
cations take differing approaches to these issues, and
SPEC has its own requirements. For example, SPEC
prefers the ANSI standard, but some programs still
have widespread K&R vestiges. Eventually, the ves-
tiges that actually cause problems will be prioritized
for removal, and most of the rest will remain
unchanged. Some programs use a tailoring process,
often called configure, but SPEC prefers to minimize
source code differences. SPEC avoids configure, and
looks for other portability methods, such as addi-
tional #ifdef directives.

July 2000 29

In order to provide a level playing field for competition, SPEC
wants to ensure that comparable work is done across all tested plat-
forms. But consider the following code fragment, which is extracted
(without ellipses) from a much larger section of 187.facerec:

If ((NewSim − OldSim) > SimThresh) Then
CoordX (IX, IY) = NewX
CoordY (IX, IY) = NewY
Hops = Hops + 1
Improved = .TRUE.

EndIf
Sweeps = Sweeps + 1
If ((.NOT. Improved) .OR.
(Sweeps >= Params%Match%MaxSweeps))

Exit

The loop exit depends on a floating-point comparison indicat-
ing an improvement in face similarity. The comparison is
affected by differences in the order and accuracy of floating-
point operations as implemented by different compilers and
platforms.

If two systems correctly recognize a face but do a different
number of iterations, are they doing the same work? Although
one could argue that in some sense the work is equivalent—one
platform just takes a different code path to get the answer—
SPEC has traditionally preferred similar code paths. But SPEC
would also prefer to avoid artificially recoding the author’s orig-

inal algorithm—for example, by changing the above loop to use
a fixed number of iterations.

Thus, 187.facerec faced a dilemma in March 1999. The solu-
tion to this dilemma was to use a new feature of the SPEC
CPU2000 tool suite—namely, file-by-file validation tolerances.
SPEC modified facerec to output detailed data about the number
of iterations for individual faces to one file and a summary of total
iterations to another file. The two files are validated as follows:

Detail Summary
reltol 0.2 0.001
abstol 5 2.e − 7
skiptol 4 0

That is, for individual faces, the tools will accept the reported
number of iterations if it matches the expected number of iter-
ations within 20 percent (reltol = 0.2), or they will accept the
reported number of iterations if it is no more than five iterations
different from the expected number of iterations (abstol = 5). If
both of these checks fail, then up to four times the tools will
accept any difference whatsoever (skiptol = 4). But for the over-
all run, the number of iterations must match within one-tenth of
1 percent (reltol = .001), and all iterations must be checked
(skiptol = 0). Therefore, two platforms executing 187.facerec
may in fact do different amounts of work in the task of match-
ing a single face, but they must do substantially similar amounts
of work in the task of matching all the faces.

Comparable Work

30 Computer

The C++ applications are the biggest challenge. The
standard is new, runtime functions (class libraries) are
diverse and hard to compare, and SPEC received only
two C++ applications. One of these has already been
voted out: It worked with gnu g++ but proved imprac-
tical to port to ANSI C++. The other—252.eon—is
far more portable, works on all 17 C++ compilers
tested in February 1999, and will later ship with
CPU2000 (in December 1999).

As Table 1 shows, in this particular week in
February 1999, the benchathon solves just over half
the outstanding problems. The point of a benchathon
is to gather as many as possible of the project leaders,
platforms, and benchmarks in one place and have
them work collectively to resolve technical issues
involving multiple stakeholders: At a benchathon, it is
common to see employees from different companies
looking at the same screen, helping each other.

Project leaders and the tool master
A project leader shepherds each candidate bench-

mark and owns resolution of all portability problems.
One ambitious soul has 10 benchmarks, though the
subcommittee will later lighten this load.

Another project leader has only three benchmarks,
but each one has challenges. One benchmark is a sim-
ulator that never seems to get the same answers on
different systems and will later be dropped. Another—
186.crafty—requires 64–bit integers, which are not
standardized in C89, but all tested compilers will
prove to have some means of specifying them. The
third benchmark has mysterious validation errors, and
members closely examine one another’s results. The
application constructs a pixel map with different col-
ored areas. For a few border pixels, the color choice
is sensitive to minor differences of floating-point
results, and different platforms make different deci-
sions that are nearly invisible to the eye. After discus-
sion, the members agree that for the purposes of this
application the differences are irrelevant.

One of the subcommittee members serves as tool
master and writes tools to control benchmark com-
pilation, execution, and validation. This tool master
suggests a new feature—skiptol—to allow a prede-
fined number of different answers. The feature is
implemented during this week in February, and
177.mesa will be released in CPU2000, with skiptol

allowing six differences out of 3.9 million numbers
printed.

BENCHMARK SELECTION
Porting is a clearly technical activity, with a rea-

sonably simple completeness criterion: Does the
benchmark work? By contrast, benchmark selection
involves multiple, sometimes conflicting criteria,
which may lack simple answers. The CPU2000
benchmarks (Table 2) were selected from a much
larger collection of candidates, submitted by mem-
bers and by the general public through a search
process announced at SPEC’s Web site. Ultimately,
benchmarks are selected by vote, and members may
weigh the criteria differently. Often, a candidate
benchmark may attract “yes’’ votes if it

• has many users,
• exercises significant hardware resources,
• solves an interesting technical problem,
• has generated results that are published in rec-

ognized journals, or
• adds variety to the suite.

A candidate benchmark may attract “no’’ votes if it

• cannot be ported in a reasonable time,
• does too much I/O and therefore does not remain

compute-bound,
• has previously appeared in a SPEC CPU suite

and the workload is largely unchanged,
• appears to be a code fragment rather than a com-

plete application,
• is redundant with other candidates, or
• appears to do different work on different platforms.

Objective criteria
Since SPEC wants to produce a suite with techni-

cal credibility, access to objective technical data is
highly desirable. But SPEC members are often
employees of companies that compete with each
other, and vendor confidentiality limits what can be
said, for both business and legal reasons.

The solution to this problem for CPU2000 was that
all members simultaneously provided some amount
of objective data, and the subcommittee kept this data
confidential, thereby reducing management concerns.
The process worked well: SPEC gained objective data
about candidate benchmarks’ I/O, cache and main-
memory behavior, floating-point operation mixes,
branches, code profiles, and code coverage.

Three subjective criteria
One subjective criterion is confidence in benchmark

maintainability. Some candidate benchmarks have
errors that are difficult to diagnose. Some have regres-

Table 1. February 1999 benchathon results.

19 Feb 26 Feb
Compile errors 22 2
Runtime errors 18 6
Validation errors 60 41
Total 100 49

sions: A problem is solved and then mysteriously reap-
pears. Some benchmarks are repeatedly submitted
with errors that are easy to figure out but require sub-
committee time. Although factors such as these may
not be decisive, they contribute to the confidence level.
SPEC desires real applications, with real, nontrivial
source code, but that source code needs to be per-
ceived by the committee as maintainable.

Another subjective consideration is transparency.
A transparent benchmark becomes stable quickly
enough so that members have time to analyze it. It
may have complex code, but it does not give the
impression of being intentionally misleading. It has
a workload that can be sensibly described both in
ordinary English and in the technical language of
the application domain. Reasoned arguments sup-
port it.

A final subjective criterion is vendor interest. If a
vendor employs a subcommittee member, is there a
temptation to vote according to competitive effect?
Yes, the temptation exists, but two factors greatly
reduce its influence:

• Generally, members do not know the perfor-
mance of candidate benchmarks on competitors’
hardware. Even with an unlimited budget and
unlimited time, it would be impossible to buy the

competitors’ unreleased next-generation hard-
ware and unreleased compilers. You cannot
really know the competitive position of a bench-
mark until after the suite is released; it’s better to
just vote on the basis of technical merit.

• It is nearly impossible to argue in the subcom-
mittee, “you should vote for 999.favorite because
it helps my company.” Blatant efforts along these
lines would backfire; subtle attempts may raise
concerns about transparency.

Of course, SPEC members who are vendor employ-
ees keep their employer’s interests in mind. For exam-
ple, an employee of a company that makes big-endian
Unix systems makes sure that the playing field is not
tilted in favor of little-endian NT systems. Arguments
to level the playing field are always welcome and
quickly attract support. But attempts to tilt the play-
ing field just don’t work.

PERFORMANCE RESULTS
The CPU2000 suite should tell us something about

performance that we cannot learn simply by know-
ing a chip’s clock speed. If performance depended only
on megahertz, there would be no performance differ-
ences between two identical chips, and a faster chip
would always win.

July 2000 31

Table 2. CPU2000 integer and floating-point benchmark suite.

Benchmark Language KLOC Resident size (Mbytes) Virtual size (Mbytes) Description

SPECint2000
164.gzip C 7.6 181 200 Compression
175.vpr C 13.6 50 55.2 FPGA circuit placement and routing
176.gcc C 193.0 155 158 C programming language compiler
181.mcf C 1.9 190 192 Combinatorial optimization
186.crafty C 20.7 2.1 4.2 Game playing: Chess
197.parser C 10.3 37 62.5 Word processing
252.eon C++ 34.2 0.7 3.3 Computer visualization
253.perlbmk C 79.2 146 159 Perl programming language
254.gap C 62.5 193 196 Group theory, interpreter
255.vortex C 54.3 72 81 Object-oriented database
256.bzip2 C 3.9 185 200 Compression
300.twolf C 19.2 1.9 4.1 Place and route simulator

SPECfp2000
168.wupwise F77 1.8 176 177 Physics: Quantum chromodynamics
171.swim F77 0.4 191 192 Shallow water modeling
172.mgrid F77 0.5 56 56.7 Multigrid solver: 3D potential field
173.applu F77 7.9 181 191 Partial differential equations
177.mesa C 81.8 9.5 24.7 3D graphics library
178.galgel F90 14.1 63 155 Computational fluid dynamics
179.art C 1.2 3.7 5.9 Image recognition/neural networks
183.equake C 1.2 49 51.1 Seismic wave propagation simulation
187.facerec F90 2.4 16 18.5 Image processing: Face recognition
188.ammp C 12.9 26 30 Computational chemistry
189.lucas F90 2.8 142 143 Number theory/primality testing
191.fma3d F90 59.8 103 105 Finite-element crash simulation
200.sixtrack F77 47.1 26 59.8 Nuclear physics accelerator design
301.apsi F77 6.4 191 192 Meteorology: Pollutant distribution

32 Computer

Figure 1 shows integer and floating-point perfor-
mance for four differently configured systems using
the Alpha 21164 and 21264 chips. Performance is
stated relative to a reference machine, a 300-MHz Sun
Ultra5_10, which gets a score of 100.

Let’s focus first on the three 21164 systems. As you
can see, performance depends on more than megahertz:

• Performance of the 26 benchmarks on the 21164
systems ranges from 92.3 to 331.

• The 500-MHz 21164 systems (AlphaStation
500/500 and Personal Workstation 500au) differ by
more than 5 percent on 17 of the 26 benchmarks.

• The 533-MHz AlphaServer 4100 5/533—with a 7
percent megahertz advantage—wins by more than
10 percent three times, by less than 3 percent three
times, and loses to a 500-MHz system three times.

To understand these results, we need to consider the
differences between the systems, particularly the mem-

ory hierarchies shown in Table 3. Notice that each
21164 memory system has some characteristic supe-
rior to the others:

• AlphaStation 500/500 has the largest L3 cache;
• Personal Workstation 500au has the best cache

latency and main-memory latency, especially
when measured in processor cycles; and

• AlphaServer 4100 5/533 has the highest main-
memory bandwidth.

Cache effects. The 4100 5/533 wins for most bench-
marks, with the largest margin on 179.art. In Table 2,
we see that art’s resident size almost fits in a 4-Mbyte
cache, but not in a 2-Mbyte cache. The miss rates in
Table 4 confirm this. The 4100 5/533 wins because
179.art fits in its cache, which is faster than the
500/500 cache.

A benchmark with especially interesting cache effects
is 181.mcf, where the 500/500 outperforms the usually

0 100 200 300 400

300.twolf

Scale

256.bzip2

255.vortex

254.gap

253.perlbmk

252.eon

197.parser

186.crafty

181.mcf

176.gcc

175.vpr

164.gzip

371
214

201
189

328
189

171
179

400
226

203
207

251
142

132
125

312
188

171
174

365
193
194

190

206
138

124
130

369
190

179
170

238
154

123
167

337
166

146
135

266
184

167
175

237
154

144
141

(a)

0 200 400 600 800 1,000

301.apsi

Scale

337
193

176
165

200.sixtrack 204
148

137
139

191.fma3d 392
157
155

125

189.lucas 520
236

210
181

188.ammp 286
160

139
162

187.facerec 456
209

178
200

183.equake 195
114

108
94.4

179.art 759
331

205
263

178.galgel 315
203

163
196

177.mesa 386
207

195
198

173.applu 323
114

107
92.3

171.swim 937
193
192

151

168.wupwise 366
173

166
154

172.mgrid 408
130
130

112

(b)

500/500

500au

4100 5/533

DS20 (21264)

Figure 1. Integer (a) and floating-point (b) performance for three Alpha 21164 systems—the 500-MHz AlphaStation 500/500, the 500-MHz Personal Work-
station 500au, and the 533-MHz AlphaServer 4100 5/533—and the Alpha 21264-based 500-MHz AlphaServer DS20 6/500.

faster 4100 5/533. According to a profile from DCPI
(Compaq Continuous Profiling Infrastructure, formerly
known as Digital Continuous Profiling Infrastructure),2

the 4100 5/533 spends substantial time on code such
as the following, where the subtract instruction requires
on average 117 cycles per issue (CPI):

ldq a1, 64(s1)
... [two instructions elided]...
ldq a2, 88(t6)
ldq v0, 32(a1)
... [one instruction elided] ...
subq a2, v0, v0

This code loads registers a1 and a2 from memory,
loads register v0 from 32 bytes past the address con-
tained in a1, subtracts v0 from a2, and leaves the
result in v0.

The subtract instruction, therefore, depends on the
completion of three loads in the immediately preceding
six instructions. The exact breakdown of time would
require a low-level performance simulation, but we can
sketch a plausible scenario why 117 cycles are required.
The subtract typically waits for the dependent load of
v0,finding it in the L3 cache 15 percent of the time (33
cycles) and in main memory 85 percent of the time (132
cycles). DCPI shows 253 million L3 cache misses for
the subtract instruction. By contrast, the subtract shows
a CPI of 95 on the 500/500 (much less than its 171-
cycle trip to memory) and only 161 million L3 misses.
For 181.mcf, an 8-Mbyte cache is helpful.

The 500au is victorious only once, on 252.eon, and
its margin of victory is so small as to introduce doubt as
to whether or not run-to-run variation may be larger
than the seeming victory. But it is plausible that the faster
cache contributes to eon’s good performance on the
500au, because eon has the smallest resident size.

Main memory. Cache effects are important, but many
scientific applications stride through large arrays and

thus depend on main-memory bandwidth. The 4100
5/533 has the best main-memory bandwidth of the
three 21164 systems, so its bandwidth advantage is
a likely contributor to its victories. As Table 4 shows,
three of the top five SPECfp2000 miss generators do
not significantly improve when the cache size
increases from two to four megabytes—namely,
171.swim, 189.lucas, and 173.applu. Therefore, we
would hope to see an improvement from the 500au
to the 4100 5/533 that is due to memory bandwidth
and not cache effects. In fact, the 14 percent band-
width improvement appears to have provided
improvements of 1 percent, 12 percent, and 7 per-
cent for these three benchmarks, respectively.

Although it’s not clear why swim has such a small
benefit, we can form a reasonable hypothesis as to why
lucas has a large benefit: The 21164 can have only two
simultaneous outstanding memory-load requests.
Therefore, the 4100 5/533 bandwidth advantage will
be most evident for applications where loads are nicely
spread through the code rather than being bunched
together. When they are spread, the processor is more
likely to overlap computation with memory activity;
when they are bunched, the processor will stall after
the third load so that overlap is reduced.

Lucas was hand-unrolled by its author, long before
submission to SPEC. DCPI shows that the routine
fft_square has the bulk of the L3 cache misses

July 2000 33

Table 3. CPU and memory characteristics.

CPU Alpha 21164 Alpha 21264
System 500/500 500au 4100 5/533 DS20
CPU MHz 500 500 533 500
L1 cache on chip 8 Kbytes (instruction) + 8 Kbytes (data) 64 Kbytes (instruction) + 64 Kbytes (data)
L2 cache on chip 96 Kbytes None

Off-chip cache
Size (Mbytes) 8 2 4 4
Latency (ns) 82 58 62 32
Latency (processor cycles) 41 29 33 16

Main memory
Latency (ns) 341 247 248 184
Latency (processor cycles) 171 124 132 92
Bandwidth (Mbytes/s) 200 238 272 1,232

Latencies are measured for dependent loads (also called pointer chasing) in a stride of 128 bytes; lower is better.
Bandwidth is measured using the McCalpin Stream triad,1 which calculates bandwidth in millions of bytes per second;
higher is better. For the three systems that use the Alpha 21164, bold type indicates the best value in each row.

Table 4. L3 cache misses per 1,000 issues. Top 5
SPECfp2000.

Benchmark 2 Mbytes 4 Mbytes 8 Mbytes
179.art 29.1 0.5 0.4
171.swim 23.9 23.7 23.6
183.equake 23.6 22.2 21.0
189.lucas 19.6 19.3 18.9
173.applu 14.2 14.0 13.0

34 Computer

(approximately 2.6 billion), but no single instruction
has more than 86 million of these. If we extract the
virtual addresses of the 40 instructions with the high-
est miss rates (which together comprise 84 percent of
the fft_square misses), the average distance between
these instructions is 823 bytes, or 205 instructions.
In short, 189.lucas has its memory activity nicely
spread.

Up to this point, we have considered three systems
at about 500 megahertz, using the same CPU with dif-
fering memory hierarchies, and have observed differ-
ences in how the CPU2000 benchmarks respond. If
you want good performance, it’s not just megahertz
that matters.

Processor performance
Let’s change the processor but stay at 500 mega-

hertz. Figure 1 also compares performance results for
the three 21164 500-MHz systems against the
AlphaServer DS20 6/500 using the new Alpha 21264
processor. The DS20 provides an entirely new mem-
ory system as shown in Table 3. Cache latency
improves by a factor of 1.8, memory latency by 1.3,
and bandwidth by 4.5. The memory bandwidth is bet-
ter both because of the DS20 memory system and
because of the 21264 CPU, which supports up to eight
outstanding loads and eight outstanding writes.

Although we have held megahertz constant, per-
formance has changed radically. The three integer
benchmarks with the greatest improvements are
252.eon (1.89 times as fast as the 4100 5/533),
186.crafty (1.94), and 176.gcc (2.03). Eon and crafty
have small memory footprints; so it is likely that they
have benefited from the improved cache latency and
from the CPU itself, which provides out-of-order issue
(the 21164 has in-order issue).

Why does gcc show the greatest improvement
among the integer benchmarks, and why does the

CPU2000 version gcc show a much greater improve-
ment than the CPU95 version (2.03 versus 1.61)?3 Put
simply, it’s the workload. For CPU95, gcc does mini-
mal optimization; in the 79 seconds it runs on the
DS20, it compiles 56 programs and never uses more
than 47 megabytes of virtual memory. The CPU2000
version compiles much larger programs, does aggres-
sive inlining, and then does extensive optimization; it
runs for 327 seconds on the DS20 while compiling
only 5 programs and consuming 156 megabytes of
virtual memory. The DS20’s improved memory band-
width contributes to the improved performance of
CPU2000 gcc, as the compiler shuffles through its
tuples in search of the best optimizations.

On the floating-point side, we would expect
171.swim, 189.lucas, and 173.applu (see Table 4) to
benefit from main-memory bandwidth improvements,
and the evidence seems to confirm that expectation
for two of three benchmarks when considering the
21164 systems. The 21264-based system, with 4.5
times the memory bandwidth, appears to have helped
all three benchmarks, with performance improve-
ments of 4.9, 2.2, and 2.8 times, respectively.

Despite its high miss rate, 183.equake improves by
a factor of only 1.7. According to its description in the
CPU2000 documentation, it uses “an unstructured
mesh that locally resolves wavelengths, using a finite
element method.’’ According to DCPI, the cache
misses are concentrated in a routine that does a matrix
vector product using indirect addressing. In short,
equake is latency bound rather than bandwidth
bound.

Compiler effects. All results in this article use a single
set of compilers and “base’’ tuning: no more than four
optimization switches, with the same switches applied
to all benchmarks of a given language in a suite.
Different tuning, or a different set of compilers, would
produce different results. This is intentional. The CPU
suites are designed to test three things: the CPU, the
memory hierarchy, and the compilers.

Space does not permit exploration of the important
effects from compilers, but we can briefly mention two
items:

• With more than 400,000 lines of new code in the
CPU2000 benchmark suites, compilers need to
be robust. For example, if you turn on “–fast’’
for SPECfp_base2000, it must produce correct
answers and acceptable performance for all 10
Fortran benchmarks.

• Some benchmarks are sensitive to compiler
strategies such as unrolling methods or loop
transformations. For example, when 178.galgel
is built using peak rules, which permit individu-
alized tuning, its performance on the DS20 6/500
is 70 percent faster than with base tuning.

SPEC/Academia
SPEC encourages research and academic usage of

the new CPU2000 suite, as described in section 4.5
of the run rules (http://www.spec.org/cpu2000/
docs/runrules.txt). During the year 2000, SPEC is
offering two incentives to the academic community:

• SPEC has reduced the cost of membership for
associate members, as described at http://
www.spec.org/news/y2kspecial.html.

• Universities can obtain a free copy of SPEC
CPU2000 (or certain other SPEC products)
through 31 December 2000, by following the
instructions at the above URL.

As compilers continue to evolve and improve, it is
likely that CPU2000 benchmark performance will
change. SPEC encourages study of the benchmarks by
compiler developers, but optimizations must be imple-
mented in ways that benefit general applications, not
just the applications in the SPEC CPU suite.

This discussion of benchmarks barely scratches
the surface. SPEC encourages industry and
academia to undertake further study of the

CPU2000 benchmarks because we believe these
research efforts will result in performance improve-
ments that will be of general benefit to end users.

With CPU2000 out the door, it is already time to
begin thinking about CPU200x, the successor to
CPU2000. SPEC encourages those who would like to
contribute to the next suite to come forward.
Universities, consultants, compiler vendors, hardware
vendors, ISVs, and end users are all welcome to become
members of SPEC (see the “SPEC/Academia” sidebar).
Please seriously consider how your contributions of
code, time, or effort might help to shape better bench-
marks and, therefore, help the computer industry to
design and validate better computer systems. ✸

References
1. J. McCalpin, “Stream: Sustainable Memory Bandwidth in

High Performance Computers;’’ http://www.cs.virginia.
edu/stream/.

2. J. Anderson et al., “Continuous Profiling: Where Have
All the Cycles Gone?’’ Proc. 16th ACM Symp. Operat-
ing Systems Principles, http://www.unix.digital.com/
dcpi/publications.htm.

3. CPU95 gcc results, http://www.spec.org/cpu95/results/
res97q4/cpu95-971027-02208.asc; and http://www.
spec.org/cpu95/results/res99q1/cpu95-981221-
03231.asc.

John L. Henning is secretary for the SPEC CPU Sub-
committee. He is also a senior member of the techni-
cal staff in the benchmark performance engineering
group, High Performance Servers Division, Compaq
Computer Corporation. Henning studied philosophy
at the University of New Hampshire and the Univer-
sity of Colorado. He is a member of the AAAS, the
ACM, and the IEEE Computer Society. Contact him
at j.henning@computer.org.

