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Introduction

SPEC CPU2000 had a target memory footprint of 200 MB
for the benchmarks [1], to enable the suite to run on
machines with 256 MB of memory. Six years have elapsed
since the release of that suite, and in that time memory sizes
have increased significantly, so the memory requirements
for the recently released CPU2006 reflect this. CPU2006 has
been targeted to have a benchmark memory footprint of
about 900MB, allowing the suite to run on machines with
1GB of memory.

There are multiple metrics of memory usage. The most
common are the Virtual Size (VSZ) (called “vsz” by the Unix
'ps ' utility) and the Resident Set Size (RSS) (called “rss” by
'ps"). The VSZ and the RSS for the benchmarks in the suites
are summarised in this paper, and examined in greater depth
in [2].

VSZ is the amount of address space that the operating
system has reserved for the application. This memory is a set
of address ranges available to hold data or instructions; the
addresses do not actually have to hold useful data, or even
be resident in physical memory (for example they could be
paged out to disk).

The RSS is a measure of how much physical memory is
actually being used by the application; often this will be the
same as the V'SZ of the application, but it may be less. When
a computer runs low on physical memory, parts of
applications can be paged out to disk, reducing the RSS for
that application, but keeping the same VSZ.

The VSZ of an application does not necessarily reflect the
minimum memory required to run the application. As an
example, suppose that an application starts, and has an initial
VSZ of 100MB, and all of this data is present in physical
memory. The application would also have an RSS of 100MB
because the data is resident in memory. The next thing the
application does is to call the Unix mmap routine to allocate
space in memory to read a file from disk. This file has a size
of 1GB, so the Unix mmap call will reserve 1GB of virtual
memory, but will not read the contents of the file into this
memory until the contents are actually used. The VSZ of the
application would reflect the fact that the application is using
1.1GB of address space. However, the RSS would remain at
100MB, since none of the file has yet been mapped into
memory. If 100MB of the file is read into memory, and then
the file is closed, the RSS will increase to 200MB, but the
VSZ will remain at 1.1GB.

As can be seen from the example, the VSZ of an
application is always greater than the RSS of the application,
and having a large V.SZ does not necessarily mean that all of
that physical memory is needed to run the application.

Memory usage is also affected by libraries and
optimizations. For example, an application might call an
optimized library for memory management (e.g. the Unix
calls malloc and free) to improve the speed of malloc

and free at the expense of using a larger amount of
memory. In this situation the application code is not
changed, but the new library will cause a larger memory
footprint. Similarly there are some compiler optimizations
which use memory to hold temporary copies of data. These
optimizations trade some increased memory usage for an
improvement in runtime.

The metrics of V'SZ and RSS are appropriate measures of
the amount of memory that an application occupies.
However they give only limited insight into how much
memory an application actually uses. For example it is
relatively easy to allocate arrays to hold the largest data set
that the application can handle, but when the application is
run on a smaller data set, these arrays take up memory, but
contain no useful data.

The Working Set Size (WSS) is an estimate of how much
memory is actually being actively used by an application.
The difference between VSZ, RSS, and WSS can be conveyed
by further consideration of the earlier example.

Recall that after reading 100MB of data from a file of 1GB
in size, the 100MB application has a V'SZ of 1.1GB, and an
RSS of 200MB. Suppose the application uses the 100MB of
data read in from a file to perform some calculation. This
calculation iterates over the 100MB of data for the entire
runtime of the application to eventually produce a single
value as output. If no other data is touched, it can be argued
that the application has a WSS of 100MB.

The idea of WSS is related to measurements of cache
performance (such as miss rates). However WSS has the big
advantage that it is independent of any cache
implementation in hardware.

Related work

The idea of Working Set Size appears in multiple contexts.
Denning [3] was responsible for early work in this area,
evaluating WSS in the context of reducing the number of
page faults as memory was paged to and from disk.

Sair and Charney [4], evaluate the idea of WSS in

relationship to TLB misses when running CPU2000; they
determine that a 4MB pagesize substantially reduces the
number of TLB misses.
In another context, Cantin and Hill [5] look at the idea of
WSS at the level of the L1 caches and evaluate the decline in
the number of cache misses as the cache size increases.
Similarly Hallnor and Reinhardt [6] investigate the impact of
data compression on the WSS of the CPU2000 benchmarks.



Methodology and Working Set Size

To gather the data presented in this paper, the SPEC CPU
benchmarks were compiled on an UltraSPARC-III based
system using the Sun Studio 11 compiler with the -fast
optimization flag (-fast produces 32-bit binaries by
default). The values for RSS and VSZ were the end of run
values reported by spot[7] for each workload.

As has been indicated by the section on related work, the
idea of a Working Set Size can be applied at cacheline size or
at the TLB page size levels, depending on what the objective
is. To determine a good trade-off for cache size, the WSS
needs to be tracked at the level of cachelines. To determine
how big the TLB needs to be, the WSS needs to be tracked at
the level of page sizes. This paper focuses on the WSS at the
level of the 64-byte block, since many processors have
adopted this size at some level in their cache hierarchy.

The estimates for WSS were obtained using a SHADE [8]
based tool written for this purpose. Shade allows execution
tracing with a variety of user-written analysis tools. In this
case the tool tracked the address of every load and store that
an application performed. The memory addresses were
tracked at the level of 64-byte blocks. An array was used to
record the particular blocks touched. After an interval of 1
billion memory operations, the array was traversed to
determine how many blocks had been touched during the
interval. The WSS for the interval was calculated by
multiplying the number of blocks touched in the interval by
the size of each block (64 bytes). This paper reports the
average WSS over the entire run of the workload.

The sampling interval will have an impact on the WSS
reported. The longer the interval the more likely it is that the
workload will have touched all of its useful data - hence a
long interval should lead to a larger estimate for the WSS.
The interval of 1 billion memory operations was selected
because a billion memory operations will take a time that
can be measured in units that are on the order of seconds.
For example, if one in every four instructions is a load or a
store, then 1 billion memory operations is roughly 4 billion
total instructions. If one instruction is executed every cycle
on a 1GHz processor then it will take four seconds of real
time to complete the 1 billion memory operations. An
alternative view of the interval of 1 billion memory
operations is that if each memory operation was fetching 4-
bytes from a different memory location, then the application
could have touched 4GB of memory in that interval. This
value is much greater than the 900MB footprint that SPEC
was targeting for CPU2006.

It would be useful to get some indication of 64-byte blocks
that are repeatedly touched versus blocks that are rarely
touched. Hence, further results are also captured from the

trace. A measure of Core Working Set Size (CWSS) is also
calculated, which is a measure of the number of 64-byte
blocks that were touched in the current sample that were also
touched in the previous sample. This is indicative of the
number of blocks that are regularly used. These blocks that
are regularly accessed would benefit from being held in
cache, whereas blocks that are used and then discarded are
not likely to be worth holding in cache. This paper reports
the average CWSS over the entire run of the workload.

In order to evaluate the progression from CPU2000 to
CPU2006, the V'SZ, RSS, WSS, and CWSS were captured for
all workloads in CPU2000 and CPU2006. A workload in
this context means one single run of a benchmark under a
unique set of parameters. For example, the benchmark
164.gzip in CPU2000 has five workloads, and it is the total
time for completing all five workloads which is reported as
the result for performance runs of the benchmark suite.

Results of VSZ and RSS analysis

The charts shown in the following results have a common
layout. The x-axis shows the memory size in MB, the y-axis
shows the percentage of workloads that would need more
than that memory size. For example a memory size of 2GB
is sufficient to contain any of the workloads, hence the
percentage needing more than that size would be 0.

The VSZ and RSS are a measure of the amount of physical
memory which is necessary to load the workload and its
data. If the benchmark is run on a system will insufficient
physical memory then the system will end up paging
memory to disk during the run of the benchmark. The VSZ
and RSS determine the minimum physical memory that is
needed to run the suite without paging data to disk.

The VSZ and RSS for the Integer part of the CPU2000 and
CPU2006 suites are shown in Figure 1. The V'SZ and the RSS
for the Integer workloads in the suite are similar. For
CPU2000 all the Integer workloads fit into a memory size of
256MB. For CPU2006, all the Integer workloads will fit into
IGB of memory. For both CPU2000 and CPU2006, a
memory size of 32MB would fit about 20% of the Integer
workloads. However, very few workloads in the CPU2006
Integer suite will fit into less than 16MB.

The V'SZ and RSS data for the Floating Point workloads are
presented in Figure 2. In this case there is a significant
difference between the VSZ and RSS of the workloads
because some of the Floating Point workloads reserve more
memory than they actually need. A result of this is that
several workloads reserve more than 1GB of virtual
memory, however there are no workloads with an RSS of
greater than 1GB. About 60% of the workloads in CPU2000
need more than 32MB of memory, in contrast about 90% of
the workloads in CPU2006 need more than 32MB.
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Figure 1: VSZ and RSS for the Integer workloads

From Figures 1 and 2 it is readily apparent that the determine that about 60% of the Integer and 40% Floating
memory footprint has substantially increased going from  point workloads in CPU2006 would fit into the memory
CPU2000 to CPU2006. From the chart it is possible to  requirements for the older CPU2000 suite.
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Results of WSS analysis Figure 3 shows the WSS and CWSS for the Integer

benchmarks in CPU2000 and CPU2006. The proximity of

This section contains the results of WSS analysis of the  the WSS results for CPU2000 and CPU2006 may seem
workloads. surprising.
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All the Integer workloads in CPU2000 and most of the
Integer workloads in CPU2006 have a WSS of less than
256MB. One workload in CPU2006, 429.mcf, has a WSS
much greater than 256MB. The biggest difference is at the
low end of the scale where about 20% of the workloads in
CPU2000 have a WSS of less than 4MB, compared to about
5% of the workloads in CPU2006.

It appears that the overall WSS is very similar across the
two suites, however CPU2006 has a lower proportion of
workloads with smaller WSS and a small proportion of
workloads with a WSS greater than 256MB - the WSS has
increased at both the low and high ends.

Figure 4 shows the WSS and CWSS for the Floating Point
workloads in CPU2000 and CPU2006. Comparing the two
suites about half of the workloads have a similar WSS.
However, for Floating Point there has been a substantial
increase in WSS of the other half of the workloads. About
25% of the Floating Point workloads in CPU2006 have a
WSS greater than 256MB, in comparison the largest WSS for
CPU2000 was 171.swim with 201MB .

Interestingly, 20% of the Floating Point workloads in both
CPU2000 and CPU2006 have a WSS of less than 4MB. In
CPU2000 this group contains 179.art and 200.sixtrack. For
CPU2006 the Floating Point benchmarks with a WSS below
4MB are 416.gamess and 453.povray. This is a different
result from the Integer workloads where CPU2006 shows a
smaller proportion of Integer workloads with a WSS of less
than 4MB.

The raw WSS and CWSS results are reported in tables 1 to
4, together with the standard deviation for the two metrics.
Cells where there is insufficient data are denoted by N/A.

Sample results of WSS evolution over time

Since the procedure for obtaining WSS reports results
every | billion memory operations, it is useful to examine
these results over time in order to determine behaviour of the
process over their entire run. This section shows the results
from workloads that show different behaviour over time.

Figure 5 shows that for the benchmark 453.povray (which
has only one workload) the WSS is stable at around 0.4MB.
The standard deviation, for 453.povray, calculated for both
the WSS and the CWSS'is 0.1 MB.

Figure 6 shows the WSS for the benchmark 447.dealll
(which has only one workload). This has an average WSS of
41.7MB and CWSS of 25MB, but it is apparent that these
numbers come from a pattern of an increasing WSS coupled
with lots of reuse of a smaller part of that WSS. This is
reflected in the standard deviation for the WSS and CWSS for
447.dealll is which is significantly greater than the mean
value.

Figure 7 shows the WSS over time for 447.namd, this is
reasonably representative of the behaviour of WSS for most
of the benchmarks. There is some considerable variation in
WSS between samples. A small working set size indicates
considerable reuse of particular memory blocks.
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Figure 5: WSS over time of 453 povray
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Concluding remarks

This paper presents data showing that the target of
requiring a larger memory footprint for CPU2006 over the
older CPU2000 suite has been met for V'SZ and RSS.

The paper uses a measure of Working Set Size (WSS) to
examine whether this increase in memory requirement is
also reflected in an increase in memory used. It appears that
the memory used has increased, but the increase is due to:

+  Fewer Integer workloads with small memory footprint.
Only 5% of the workloads in CPU2006 have a WSS of
less than 4MB, compared to 20% of those in CPU2000.

* An increase in the number of Floating Point workloads
with a large memory footprint. 25% of the Floating Point
workloads in CPU2006 have a WSS of greater than
256MB.

These results should not be unexpected. It is relatively
easy to increase memory footprint for Floating Point
workloads because these often have a direct relationship
between the size of the input data and the amount of memory
that needs to be traversed to calculate the answer.

The most surprising result is that there is a higher
proportion of Floating Point workloads that have a WSS of
less than 4MB than Integer workloads. In particular the
benchmark 416.gamess has a WSS which is about 1000x
smaller than its VSZ. Similarly 453.povray has the smallest
RSS in the suite at only 9MB. Neither of these applications
fit the traditional view of Floating point workloads.

For Integer workloads the relationship is less
straightforward, in fact it can be argued that the relative
stability of the WSS for Integer workloads between the two
suites may indicate a feature of Integer workloads in general
rather than some kind of bias or selection effect in the
Integer part of the suite.
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Figure 7: WSS over time for 447.namd
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Note: These results were not available during the
preparation of the suite.
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Tables

ISR VSZ RSS WSS Std CWSS Std Benchmark VSZ RSS WSS Std CWSS Std
(MB) (MB) (MB) MB) ‘ (MB) (MB) (MB) (MB)

198 193 64 _ 164.gzip 186 186 56.7 255 38.0 29.8
186 186 629 135 554 17.1
186 186 96.7 20.7 78.3 18.0
186 186 1050 185 91.8 15.7
186 186 40.5 326 19.0 247

400.perlbench .
333 330 21.1 304 1.7 8.3
594 591 513 257 251 138
401.bzip2 877 871 244 450 5.3 2.5

111 105 14.0 9.8 6.1 2.1

111 108 106 82 59 20 175.vpr 3 4 1203 1200
877 873 215 404 49 23 42 4 298 27 272 19
: : : : 176.gcc 151 150 625 475 286 256

877 873 164 39.7 4.5 3.5
631 628 244 450 53 35
403.gcc 247 244 659 474 304 193
210 207 692 297 59.8  26.1
443 439 571 714 232 288

98 97 224 140 13.5 6.6
52 51 356 143 242 N/A
73 72 56.8 10.5 472  N/A
94 93 214 16.7 11.0 8.2

321 316 309 656 213 289 181.mef 99 98 740 269 413 252
186.crafty 4 3 14 01 13 00
439 436 730 1060 293 426

197.parser 33 24 136 33 116 26
595 592 674 953 263 403 % . 3 ol 0 ol o0
849 846 70.7 1193 250 457 -eon 4 3 ol oo 02 00

960 955 37.6 169 336 15.1 :
4 3 01 02 0.1 00
ol 89 3760 169 336 131 253 perlbmk 72 71 124 144 1.0 12
429.mef 865 865 680.8 2419 6168 307.6 -periom 1 10 N NA  NA
445.gobmk 30 29 165 19 157 25 3 5 o1 o1 ol 00

30 29 158 32 14.2 4.0
30 29 162 2.4 15.7 29
30 29 168 1.6 16.2 2.1

456 hmmer 13 13 82 46 61 25

254.gap 200 199 1743 279 1682 343
62 62 20 02 19 0.1
458 sjeng 185 185 577 174 291 92 255.vortex 2; 23 ‘;‘1"2 } (1);‘ fg'g Z"l‘
462.libquantum 108 107 327 49 323 35 ot Ny o e
464-h264ref ;g ;g ?‘51 g'g i'? 8'3 256.bzip2 191 190 264 209 100 82
10 e 29 21 0 191 190 256 188 70 34
71 ' : : : 191 190 252 188 75 40
.omnetpp 125 124 24.1 53 21.0 3.0 300.twolf 5 4 12 03 12 0.0
473 astar 321 314 260 187 220 114 two : : ' :
137136 35 38 3123 Table 3: - Memory footprint for the CPU2000 Integer workloads

483.xalancbmk 351 345 27:8 17.8 20.1 113

Table 1: - Memory footprint for the CPU2006 Integer workloads
Benchmark VSZ RSS WSS Std CWSS Std

(MB) (MB) (MB) (MB)
RGPS (/AL RS G 168.wupwise 196 182 1623 177 1619 17.8
(MB) (MB) (MB) (MB) 171.swim 215 201 683 199 574 173
410.bwaves 917 900 4743 1314 4295 333 172 merid 5 50 250 02 346 00
416.gamess 684 36 06 04 05 03 173.applu 200 67 633 01 633 00
684 37 04 03 03 01 177.mesa 24 11 80 05 80 0.5
. 684 - 39 13 L0 L1 07 178, galgel 172 64 157 61 121 57
433.milc 693 691 230.8 589 2125 28.5 7o 5 T 34 03 52 00
434 zeusmp 1167 533 2701 559 1829 355 ; 4 24 03 35 00
435.gromacs 41 26 86 02 86 00 183.equake 30 28 206 12 204 04
436.cactusADM 1044 761 307.1 7.9 2065 63 187 foveren 0 35 163 17 150 os
437 leslie3d 147 133 752 18 752 0.0 188 ammp 6 15 132 02 B2 03
444.namd 55 54 102 34 55 11 189.lucas 161 148 1422 01 1422 00
447 dealll 579 577 147 683 250 473 e a4 109 957 130 980 160
450.soplex 141 126 272 79 243 5.1 200 sixtrack 7300 15 a0 2 o0
641 442 2015 306 1966 336 301.apsi 211 198 1369 152 1045 205
453.povray 10 9 0.4 0.1 04 0.1
454 calculix 239 225 239 239 8.2 10.0 Table 4: - Memory footprint for CPU2000 Floating Point workloads
459.GemsFDTD 868 854 800.0 150 800.0 15.0
465 tonto 63 46 62 74 48 58
470.1bm 427 427 4020 136 4003 29.0
481.wrf 737 715 163.5 479 1206 342
482.sphinx3 50 50 106 13 98 1.1

Table 2: - Memory footprint for CPU2006 Floating Point workloads
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