Subroutine Profiling Results for the CPU2006 Benchmarks

Reinhold P. Weicker
Retired, SPEC CPU Subcommittee Member 1990 — 2006
Contact: reinhold.weicker@t-online.de

Subroutine Profiling

Subroutine profiling is a well-known performance tool.
For application or system programmers, it determines ‘“hot
spots” where the program spends most of its time, and where
careful rewriting can most help performance. For compiler
authors, it can give information about programming style in
such hot spots, and can indicate where compiler improve-
ments may be useful. For hardware designers and analysts,
it can be the starting point to explain performance behavior.

During selection and porting of the CPU2006 bench-
marks, subroutine profiling was performed routinely for test
versions of the suite. It influenced the selection of bench-
marks. For example, SPEC uses benchmark profiles to help
determine weak spots in benchmark program candidates:
Does a program spend a large part of its time in subroutines
that are in some way badly or unusually written, or too easi-
ly optimized by a narrowly focused method? In SPEC CPU
subcommittee jargon, this was sometimes referred to as the
danger of “low-hanging fruit”. However, those making the
selection were aware that some real-life programs do exhibit
a high degree of locality. Therefore, a peaky profile does not
alone disqualify a benchmark candidate.

During development of CPU2006, SPEC considered
many types of profiles, including low and high optimization,
32 and 64-bit, Unix and Windows, and on various hardware.

Profile variability

It is understood that profiling results can vary. They
are not independent from the hardware and the software on
which the program is running. Even for the same instruction
set and the same compiler, times for individual instructions
may vary between implementations. For example, Load in-
structions may have a short or a long latency, or their latency
may be hidden by clever prefetching into caches. Results for
64-bit executables may be different from those for 32-bit ex-
ecutables. Results may change depending on library func-
tions. And, perhaps most importantly, optimizations per-
formed by the compiler may greatly influence the code that
is executed. If inlining is involved, some subroutines visible
at low optimization levels may completely disappear at high-
er optimization, with their execution times subsumed into
the calling subroutine’s time.

Therefore, any reference set of profiles must be regard-
ed merely as a beginning for analysis: from the profiles pro-
vided here, one can get a sense of the complexity of a pro-
gram, or the extent to which a profile is concentrated in a
single area. Reference profiles may come in handy when de-
ciding on an initial focus area: “if I want to learn about the
performance of perl, I might as well start with s_regmatch.”

John L. Henning
Sun Microsystems
Contact: john dot henning at acm dot org

Methods

As mentioned above, at high optimization routines that
are visible in the source code may become invisible at run ti-
me.. Therefore, the profiles presented here use only modera-
te optimization (—O). All binaries are 32-bit.

In cases where a benchmark has several input sets (e.g.
400.perlbench), profiling results are given for each individu-
al invocation of the benchmark binary; in the same order
here as when they are run. It is not surprising (and even, to
some degree, intended) that different input files often cause
the program to exercise different paths, and that the subrou-
tine distribution may vary considerably between invocations.
Information about the benchmark input sets may be found
at [2].

Each table lists only the 20 highest-scoring subrou-
tines. Routines using less than 1% are not reported. A lead-
ing underscore () indicates a library subroutine. C++
benchmarks have very long routine names; these have been
ruthlessly truncated in the interest of space. Note that the
routines _mcount and mcount_single are not part of
the benchmarks; they are due to profile collection overhead.

All benchmarks were compiled using the same major
version of the compiler and the same optimization level. But
it should be noted that profile collection used two methods.

(1) For most of the benchmarks, the sources were com-
piled using a recent compiler (Sun Studio 11) with the
switch —p, which causes the insertion of data-collection
code into the executable. The benchmarks were then run on
a SPARC-64 system under Solaris 5.8. The standard Unix
prof utility was then used to display the collected data.

(2) For some benchmarks, the —p method was not
preferred, either because the overhead from profiling code
(mcount) exceeded 20%, or because of software compati-
bility issues. Instead, benchmarks were compiled using a
later patch level of the same compiler as in method 1 (with-
out —p), and were then run on an UltraSPARC system un-
der Solaris 5.10 using the collect command [1]. The
er_print utility was used to display the collected data.
With this method, there was still some profiling overhead. It
is seen below as take_deferred signal, which is as-
sociated with time in lock-protected code, typically memory
allocation routines. But in all cases overhead was less than
with method 1. The benchmarks that used method 2 were:
400.perlbench, 403.gcc, 436.cactusADM, 445.gobmk,
447 dealll, 453.povray, 458.sjeng, 464.h264ref, 471.omnet-
pp, 473.astar, and 483 .xalancbmk.

For some benchmarks, informal observations / notes /
opinions are added at the end of the profiling result tables.
Of course, they reflect personal opinions and should not be
taken as objective results or as SPEC-endorsed opinions.

mailto:reinhold.weicker@t-online.de
mailto:john dot henning at acm dot org

Results for the Integer Benchmarks CINT2006

400.perlbench (C program)
Invocation 1 (about 49% of overall execution time)

36.

FHERHEHHERERNMNBO O ®

RbhoJOUONOO®®OVWL

S_regmatch

S_find byclass
S_regtry

Perl leave_scope
Perl runops_standard
take_deferred signal
Perl save alloc
S_hv_fetch_common
Perl sv_setsv_flags
Perl pp_entersub
Perl pp match

400.perlbench, invocation 2 (about 24% of time)

18.

6

12.0

4.

RPRPRRPREPFFEFENMNMNNDMNMDMNMDMNODLOLOW
BN ONMNWONDODORNOOW

take deferred signal
S_regmatch

Perl sv_setsv_flags
Perl sv_free

Imutex lock

Perl regexec_flags
Perl sv_clear

Perl leave_scope
Perl sv_upgrade

Perl sv_setpvn

Perl sv_grow

Perl runops_standard
S_regtry

Perl newSVsv

malloc

free

Perl newSVpvn
memcpy

S_regrepeat

400.perlbench, invocation 3 (about 26% of time)

56.
6.

FENMNNMDWWS
ONWWNNNd R,

S_regmatch

take deferred signal
Perl leave_ scope
S_regtry
S_reginclass

S_find byclass

Perl runops_standard
memcpy

Perl save_alloc

401.bzip2 (C program)

Invocation 1 (about 19% of overall execution time)

16.
14.
13.
11.

RRRPRWAMUOO O

oCwWwwooonwowukrs~aWw

mainSort
BZ2_decompress

mainGtU

mainQSort3
copy_input_until_stop
sendMTFValues
generateMTFValues
_mcount
mainSimpleSort

unRLE _obuf to output FAST
mcount_single

bswW

_memcpy
copy_output_until_stop

401.bzip2, invocation 2 (about 8% of time)

28.
13.
12.

9.

RFRbhOOBBWEREWNLOOUOO®

R REFRFENMNNMNNDWDDO®©

fallbackSort
BZ2_decompress
generateMTFValues
mainSort

mainGtU

fallbackQSort3
sendMTFValues

_mcount
copy_input_until_ stop
unRLE_obuf to output FAST
fallbackSimpleSort
mcount_single
copy_output_until_stop
mainSimpleSort

bsW

401.bzip2, invocation 3 (about 13% of time)

41.
12.
11.

8.

F N9 U1oJ0 0d

RRERRERNMWWAOG

N

fallbackSort
fallbackSimpleSort
mainGtU
fallbackQSort3
BZ2_decompress
_mcount
generateMTFValues
mainSort
mcount_single
sendMTFValues
copy_input until stop
unRLE_obuf to output FAST

401.bzip2, invocation 4 (about 20% of time)

WOOWOWUNNMNEFENOOWRWY

R RERPRERMNMWWdON I

BZ2_decompress
mainSort
generateMTFValues
mainGtU

copy_input until_ stop
sendMTFValues
mainQSort3

_mcount
unRLE_obuf to output FAST
mainSimpleSort
mcount_single

bsW

copy output_until_stop
_memcpy

401.bzip2, invocation 5 (about 23% of time)

34.
14.
10.

EFNNBB_OIJ

[y

OCUMWVWOOWRrROOWW

mainGtU

mainSort

mainQSort3
BZ2_decompress
copy_input_until_stop
unRLE_obuf to output FAST
_mcount
generateMTFValues
mainSimpleSort
mcount_single
sendMTFValues
_memcpy

401.bzip2, invocation 6 (about 15% of time)

14.
14.
12.

RRRPRWOWMB_MUOOIO OO

OHRKRENHOFRABMOABWOAONEK®

mainSort
BZ2_decompress

mainGtU

mainQSort3
copy_input_until_ stop
generateMTFValues
sendMTFValues

_mcount

fallbackSort

unRLE _obuf to output FAST
mainSimpleSort
mcount_single

bsW

_memcpy

copy output_until_ stop
fallbackQSort3

403.gcc (C program)

Invocation 1 (about 8% of overall execution time)

21.
11.
5.

NwWURMWOHNOREREEMOD®

RFREFRERNMNMNNMDNMDWWLWW

reg is_remote_constant_p
memset

clear_table

splay tree_splay helper
compute_transp

bitmap operation

sbitmap union of diff
bitmap element allocate
htab_traverse

single set 2

delete_null pointer_checks_1
init alias_analysis
canon_rtx

403.gcc, invocation 2 (about 11% of time)

RFRERRRRERREREEEENNNNNDWD O
CONWWARABUGONWVOKNU®O®

[y

memset
ggc_mark rtx children 1
ggc_set_mark

bitmap operation
htab_traverse

bitmap element allocate
ggc_mark_rtx children
reg_is_remote_constant_p
init alias_analysis
cse_insn

for_each rtx
clear_table

mark set 1

ggc_alloc

note_stores
constrain_operands
ggc_mark_trees
reg_scan_mark_refs

403.gcc, invocation 3 (about 11% of time)

24.

8

12.2

RFRREREEENDNNDNWOW
CORRIODWWTIWW

memset

clear_table

compute_transp

bitmap operation
sbitmap union of diff
delete_null pointer_ checks_1
bitmap element allocate
htab_traverse
compute_dominance frontiers 1
canon_rtx

loop_regs_scan

reg _is remote_constant p
ggc_set_mark

403.gcc, invocation 4 (about 8% of time)

17.
13.
5.

RPRPRPFEFFRPENMNMNMDMNMNNMDNDW
OCOORUMFEFEDNNOOWOWOWOWON

memset

clear_table

compute_transp

canon_rtx

htab_traverse

bitmap operation

delete_null pointer checks 1
sbitmap union_ of diff

find base term

bitmap element allocate
compute dominance_ frontiers 1
rtx equal for memref p
ggc_mark_rtx children 1

init alias analysis

memrefs conflict p

ix86_find base term

403.gcc, invocation 5 (about 9% of time)

18.
11.
8.

FPRPFRPENMNDNWWLWOL
OCONONMNWEKENNYOOR

memset

clear_table

compute_transp

htab_traverse

delete_null pointer_ checks_1
bitmap operation

sbitmap union_of diff

bitmap element allocate
compute_dominance frontiers 1
canon_rtx

init alias_analysis
side_effects_p

403.gcc, invocation 6 (about 13% of time)

18.
11.
8.

FNNMNONMMNUOOON

RPRPRFRPREPNMMDWWLWOL

memset

clear_table

compute_transp
htab_traverse

delete_null pointer checks 1
bitmap operation
sbitmap union of diff
bitmap element allocate
compute_dominance_ frontiers 1
canon_rtx

reg_is remote_constant p
init alias analysis

403.gcc, invocation 7 (about 20% of time)

27.
11.

FRPRFREPNMNMNMDNWWsE&OJ

O NOVWOOoOMOWOoOWRNMRER

reg_is_remote_constant_p
memset

htab_traverse

clear_table

fixup var_refs 1

delete_null pointer_ checks_1
fixup var_ refs_insns

single set 2

bitmap operation

fixup var_refs insn

bitmap element allocate

sbitmap union of diff
compute_dominance_ frontiers 1
try_combine

403.gcc, invocation 8 (about 16% of time)

RFRERENDNWS &G
FRrWARUOOWWOKRIO

.6

memset

reg _is remote_constant p
clear_table
compute_transp

bitmap operation
delete_null pointer_ checks_1
bitmap element allocate
sbitmap union of diff
canon_rtx

htab_traverse

single set 2

splay tree splay helper
find base term

403.gcc, invocation 9 (about 4% of time)

RFRREPRERREEERBREBEERERNONNMNOND S S ©
COOONNWWBRBROOWOOKKKEN®

memset

ggc_set_mark
ggc_mark_rtx children 1
constrain_operands
init alias_analysis

for each rtx

cse_insn

ggc_mark_rtx children
htab_traverse

take deferred signal
ggc_alloc

find reloads
note_stores

bitmap operation
ggc_mark trees

mark set 1
reg_scan_mark_refs
propagate_one_insn
record reg classea

Various versions of GCC have been in all SPEC CPU suites
so far, overall flat profile. The high percentage for memset is
a concern but as a compiler creates and destroys its various
data structures, it seems understandable.

429.mcf (C program)

42.
23.
12.

HHERERRERNDWO®

NdJdwowoUN O

primal_bea mpp

refresh potential
_mcount

replace weaker_arc
price out impl
mcount_single
update_tree

bea is_dual_infeasible
primal_ iminus
sort_basket

This benchmark is sensitive to memory latency. For 64 bit,
the two top subroutines reverse their positions.

445.gobmk (C program)

Invocation 1 (about 13% of overall execution time)

.7 undo_trymove

fastlib

order_moves

scan_for patterns
incremental order moves
do_play move

do_trymove

compute connection_distances
remove liberty
assimilate_string
remove neighbor
get_next move from list
hashtable clear

extend neighbor_ string
approxlib

do_push_owl

is_self atari
hashtable_search
propose_edge moves

RPRPRFRREPFEFNNMNMNMNNMMNDDMMDMNOOWOWWWSESO
ONOOWWOWOWORRFRKHEMAMUORWOULOLOWO®N

445.gobmk invocation 2 (about 34% of time)

undo_trymove

fastlib

order_moves
incremental order moves
do_trymove

do_play move
compute_connection distances
scan_for patterns
remove liberty
do_matchpat
assimilate_string
accumulate_influence
extend neighbor_ string
remove_ neighbor
approxlib

is self atari
hashtable_search
chainlinks2
count_common_libs

RPFRFRFRPENMNMNMMNMMNDMNMNMNOOWOWWSE_O
NNOOWRN_MUOUOWOR WA DBDOOOO®

445.gobmk, invocation 3 (about 21% of time)

24.
13.
3.

do_matchpat

hashtable clear

compute connection_distances
undo_ trymove
accumulate influence
scan_for patterns
order_moves

fastlib

incremental order moves
do_play move

do_trymove
assimilate_string
remove liberty

remove_ neighbor
update_liberties

extend neighbor_ string
approxlib

is_self atari

RFRERRRRERRERREPEEENNNDNWOW
CONWWUUNEOONNTIWA UV OW

445.gobmk, invocation 4 (about 13% of time)

undo_ trymove

fastlib

order_moves
compute_connection_distances
incremental order moves
hashtable clear
do_trymove

do_play move

remove liberty
do_matchpat
assimilate_string
scan_for patterns
remove neighbor

extend neighbor_string
approxlib

is self atari
hashtable_search
count_common_libs
chainlinks2

FFRFERERNMNMNNMNMNMDNMNNDMNDDNMNMNOWLWWWWLAESO
oW ORNMNNMWOOONOVUIUIOY® O WO

445.gobmk, invocation 5 (about 18% of time)

undo_ trymove
compute_connection_distances
fastlib

order_moves
do_matchpat

do_play move
incremental order moves
do_trymove

remove liberty
assimilate_string
extend neighbor_ string
accumulate influence
remove neighbor
approxlib

scan_for patterns
is_self atari
is_suicide

hashtable clear

create new_string

RFRRPFEFRFRPENMNDNNDMNDNOOWLWWAESdOO
NNNdOWOWWNdoooobdANJONONRJ

456.hmmer (C program)

Invocation 1 (about 30% of overall execution time)
97.0 P7Viterbi

456.hmmer, invocation 2 (about 70% of time)

93.1 P7Viterbi
2.1 FChoose
1.4 sre_random
1.3 _mcount

The peaky profile (subroutine P7Viterbi) might be consid-
ered a concern with this program. But it is a large subrou-
tine, and the author of hmmer is well aware of its importance
for performance. Several alternative versions are provided in
the source files for this subroutine. SPEC has chosen one
that is intended to preserve the level playing field, by not
providing an unfair advantage to any particular implementa-
tion.

458.sjeng (C program)

18.

RFFRFRERNMNMNNMNNMDMNDNWWWEBEDBDOOO

~

U ONOWOWMWORNWEREFERENO®WOBDN

std_eval
setup_attackers
gen

remove_one
order_moves
is_attacked
QProbeTT

search

make
push_slidE
unmake

ProbeTT

Pawn
checkECache
rook mobility
add_move
bishop mobility
check_legal

see

462.libquantum (C program)

56.
27.
12.

1.

The peaky profile (top subroutine: Only 28 lines of source
code) and the fact that the program has a very high cache
miss ratio / exhibits large memory pressure may create an in-
centive for optimizations to reduce memory pressure. In par-
ticular since the program is from a research environment,
one would need to verify that such optimizations benefit oth-

2
6
9
4

quantum_toffoli
quantum_sigma_x
quantum_cnot
quantum gatel

er programs as well.

464.h264ref (C program)

Invocation 1 (about 9% of overall execution time)

30.
14.
13.

(5]

RPRPRFRPWWWHSD
COoOWWr UKL INDNMDNDOVOLO

SetupFastFullPelSearch
SubPelBlockMotionSearch
FastFullPelBlockMotionSearch
SetupLargerBlocks
UMVLinel6Y 11

SATD

dct_luma

FastPelY 14

FastLineléY 11

memcpy

get_mb_block pos

Mode Decision for 4x4IntraBlocks

464.h264ref, Invocation 2 (about 9% of tme)

35.
15.

HRHERRRERRERRERENMNNDUO OO

RPN OOONOVWORIBDOOONO®O

memcpy
SetupFastFullPelSearch
SubPelBlockMotionSearch
FastFullPelBlockMotionSearch
dct_luma

SetupLargerBlocks

UMVLineléY 11

SATD

biari_encode_ symbol

FastPelY 14

FastLineléY 11

Mode Decision_ for 4x4IntraBlocks
get mb_block pos
OneComponentChromaPrediction4x4

464h264ref, Invocation 3 (about 82% of tlme) 473.astar (C++ program)
40.9 memcpy

15.0 SetupFastFullPelSearch Invocation 1 (about 48% of overall execution time)
9.1 FastFullPelBlockMotionSearch 24.2 regmngobj: :getregfillnum

6.4 SubPelBlockMotionSearch 17.6 regwayobj: :makebound2

4.6 dct luma 14.2 regwayobj: : isaddtobound

2.5 SetupLargerBlocks 14.2 way2obj: :releasepoint

1.8 SATD 12.6 wayob3j : :makebound2

1.7 FastLinel6Y 11 6.0 way2obj: :addtobound

1.6 FastPelY 14 3.8 way2obj::isaddtobound

1.3 Mode Decision_for 4x4IntraBlocks 3.4 way2obj: : releasebound

1.1 OneComponentChromaPrediction4x4

. . 0 .
Remark: There may be some concern about the high percent- 473.astar, invocation 2 (about 52% of time)

age for. _memcpy. Pgrhaps it is unavoidable for this applica- ggi ::z;gg:'.l ;Ti:ig:::giint
tion (video compression). 11.7 way2obj: :addtobound
11.2 regmngobj: :getregfillnum
471.omnetpp (C++ program) 8.9 regwayobj: :makebound2
. 6.1 regwayobj: :isaddtobound
14.2 CMessageleap: :shiftup 5.5 way2obj: :isaddtobound
10.0 take_deferred_signal 4.2 way2obj::releasebound
5.8 cSubModIterator::operator++ . .
5.1 cGate::deliver Moderately peaky profile, relatively small program size: the
4.2 cObject::setOwner top 3 routines in invocation 1 total less than 50 lines of code.
3.5 EtherMAC::handleMessage
3.2 cModule: :findGateconst
2.8 cOutVector: :record
2.5 cSimulation::selectNextModule
2.3 cObject: :~cObject
2.2 cFileOutputVectorManager: : record
2.0 cSimpleModule: :scheduleAt
1.8 cMessageHeap: :insert
1.6 cMessage::operator=
1.6 strcmp
1.6 cMessage::cMessage
1.5 cSimpleChannel: :deliver
1.5 cArray::get
1.5 std::_Rb global:: M increment

483.xalancbmk (C++ program)

10. std::__ find

xercesc_2_5::ValueStore::contains

xercesc_2_ 5::XMLString::stringLen
xercesc_2_5::BaseRefVectorOf: :elementAt
take_deferred signal

xalanc_1 8::ReusableArenaAllocator: :destroyObject
xercesc_2_5::ValueVectorOf: :elementAt

memcpy

xercesc_2_ 5::XMLString::equals

xalanc_1_ 8::ReusableArenaAllocator::allocateBlock
xercesc_2_5::ValueStore::isDuplicateOf
xalanc_1_8::ReusableArenaBlock: :ownsObject

xalanc_1_ 8::XalanReferenceCountedObject: : removeReference
xalanc_1 8::VariablesStack::findEntry
xalanc_1_8::XPath::executeMore

std::_ find if

xalanc_1 8::XalanReferenceCountedObject::addReference
xalanc 1 8::FunctionSubstring::execute

xercesz__;S::BaseRerectorOf::elementAt

RFRREREEEEREEENDNOWWD O OO
COORWRANTIJIOWR®OWOWONO®W

A very large program (in terms of lines of code), flat profile.

Results for the Floating-Point Benchmarks CFP2006

410.bwaves (Fortran program)

75.7 mat_times_vec_
14.2 bi_cgstab _block_
6.1 shell
2.2 jacobian__

Peaky profile, top subroutine is quite small, overall a small
program (Fortran77).

416.gamess (Fortran program)

Invocation 1 (about 23% of overall execution time)

19. dirfck_
13. forms_
11. genral
xyzint_
genr70_
rtl23_
shells
__exp
_mcount
twoei_
dspdfs_
mcount_single
grdg80_
ijprim_
spOsls__
tq0sls_
dabclu_
zgout_
intj2_
jdxyzs

~

FENMMNWBBMJOOUUUONWOOWOOLWNWY

RPRPRFRPRPRFEPFRFPEFEFNMDNNDNODLOLLOWWS

416.gamess, invocation 2 (about 14% of time)

37.9 dirfck_
25.3 forms_
10. xyzint_
genral
dspdfs_
zqout
rtl23
shells
ijprim_
_mcount
__exp
dabclu_

HFRERRERRERRERENDWO
CoOOoW®®®U Ul o ©

416.gamess, invocation 3 (about 63% of time)

32. twotff
21. forms_
10. dirfck_
genral
xyzint_
dirtrn_
rtl23_
zgout_
shells
__exp
dspdfs_
_mcount
ijprim_

~
OFREFENMUNOOWULONO

HFRERRREBRENDAJ

Somewhat peaky profile. Large, popular program but very
old programming style with many standards violations.

433.milc (C program)

16.
13.

mult su3 na

mult su3 nn

mult su3 mat_vec

mult adj_su3 mat vec
scalar mult_add su3 _matrix
_mcount

_memset

su3mat_copy
uncompress_anti_hermitian
su3_projector

mult su3 an

su3_adjoint

u_shift fermion
mcount_single

mult su3 mat vec sum 4dir
mult adj_su3 mat 4vec

add _su3 matrix
eo_fermion_ force

scalar mult add su3_vector

RPRPRPREPFEFNMNNDMNOWWASdSU I OO©
ONUONCONRFR OKFONODOUINOHNOJONR

434.zeusmp (Fortran program)

37.
16.
10.

6.

hsmoc__
lorentz_
_mcount
mcount_single
__f95 sign
momx3
momx2__
momx1
tranx3
tranxl
tranx2
forces__
avisc_
newdt_

ct_

RUuoooodJoOobbJdJOWWRE ON

RFRRERRERRERENMDNONNWO

Somewhat peaky program. The peak subroutine is well doc-
umented and seems to be carefully written. However, it
makes use of COMMON and EQUVALENCE which are
now considered old-fashioned Fortran programming style.

435.gromacs (C/Fortran program)

66. inll1130_
ns5_core
_mcount
mcount_single
put_in list
do_update_md
inl1120_
fsettle
inl1100_
inl0100_

HRERRERRERNOGO
NNNUOONKR®N

The top subroutine, and several others, are machine generat-
ed, not written directly by a human programmer.

436.cactusADM (C/Fortran program)

99.9 Dbench_staggeredleapfrog2_

Although this is a very peaky profile, the routine is moder-
ately long: 810 lines, and the activity is spread out across it.
It is machine-generated code.

437.leslie3d (Fortran program) 444.namd (C++ program)

16.5 fluxk All routines below are from ComputeNonbondedUtil: :
16.0 fluxj_- 13.5 calc_pair energy fullelect
13.7 extra;j 12.3 calc _pair fullelect
13.2 extrapi 10.0 calc_pa}r_gnergy
— 9.6 calc_pair energy merge_ fullelect
13.0 extr?pk__ 9.3 calc pair merge fullelect
12.8 fluxi 9.1 calc_pair
11.0 update_ 7.4 calc_self energy fullelect
3.2 setbc__ 6.6 calc_self fullelect
Remark: One Fortran source module only. g:g EZiz—z:iE—EZEZ;ful1eleCt

All of the above routines are actually instantiated from a sin-
gle template in a .n file, which caused some challenges for
profiling tools. The common source may cause some risk of
low-hanging fruit, but the activity is distributed over several
different loops in the file.

447.dealll (C++ program)

l6.
12.

RPRPFEPFRFRPFEFFEPNMNDNDDOWLAEOOG OO
FNMNNMNWbB_AMNMNWdMOJOJLOUIWW

ConstraintMatrix::add line
LaplaceSolver: :Solver: :assemble matrix
MappingQl: :compute_ fill

SparseMatrix: :vmult

std::_Rb global:: M increment

contract

std::__advance

ConstraintMatrix::add entry
FiniteElementBase: :canpute_2nd

Tensor: :Tensor

SparseMatrix: :precondition_Jacobi
Tensor: :operator*

std::_Rb tree,std::less,std::alloccator::insert unique
Tensor: :operator+=

QProjector: :DataSetDescriptor: :operator
MappingQ::apply_laplace vector

Tensor: :operator*=

450.soplex (C++ program)

Invocation 1 (about 48% of overall execution time) 450.soplex, invocation 2 (about 52% of time)
. 2
17.1 SSVector: :assign2productFull 32.3 SVector: : operator*
13.9 _mcount 15.0 mcount
6.8 CLUFactor::initFactorMatrix 12.6 SSVector::assign2productFull
6.5 SPxFastRT::maxDelta 8.9 SPxSteepPR::selectEnterX
5.6 SSVector::setup() .6 Vectoré&soplex: :Vector: :multAdd
5.1 _memset 4.1 SPxSteepPR::entered4X
4.9 CLUFactor: : vSolveUrightNoNZ 3.0 single
3.7 SPxSteepPR: : selectLeaveX 2.6 SSVector: :clear ()
3.2 CLUFactor: : solveLlef tNoNZ 2.6 SoPlex: : test
2.7 SSVector::clear() 2.2 DataHashTable::index
2.4 Vectoré&soplex: :Vector: :multAdd 2.1 SSVector: : setup ()

453.povray (C++ program)

13.
12.

pov::Intersect Sphere
pov::Intersect Plane

pov::All CSG_Intersect_ Intersections
pov: :Check And Enqueue

pov::All Sphere Intersections
pov::All Plane Intersections
pov: :DNoise

pov::Inside Plane

pov::Inside Object
pov::Intersect Quadric
pov::Ray In Bound
pov::priority queue_ insert
pov::Priority Queue Delete
pov::Intersect BBox Tree

pov: :Noise
pov::Intersect Light Tree
pov::Inside Quadric

pov: :Intersection
pov::compute lighted_ texture

RRPRRERPFRPENMNNDMDDOWWWSSOG®
UUONOWOORWRONONOOSOKFEONOLO

454.calculix (C/Fortran program)

53.
18.

e _c3d_

DVdot33

DVaxpy

Chv_updateS

_mcount

Network findAugmentingPath
mcount_single

_POW

The profile appears somewhat peaky, but top routine, ¢ c3d
is long (1110 lines of code). It is from the application prop-
er. The DV and Chv routines are from “SPOOLES”, a pub-
lic domain solver library included with the benchmark
source. The inclusion of SPOOLES makes the directory
tree somewhat complicated.

HENNN S
HORAMBdRO

459.GemsFDTD (Fortran program)

21.7 update_mod.updatee_homo_
21.4 update_mod.updateh_homo_

18.4 upml_mod.upmlupdatee
17.0 upml_mod.upmlupdateh
14.4 nft mod.nft store_

1.5 setexception

1.1 _mcount

1.0 huygens_mod.huygense

465.tonto (Fortran program)

14.
13.
9.

shell2 module.make ft 1

shelllquartet module.form esfs no rm_
_mcount

mcount_single

__exp

shelllquartet_module.make esss
gaussian2 module.make ft component_
_libc_threads_interface
shelllquartet_module.make esfs_
__z_exp

crystal module.sum ft ints

__sincos

__k _sincos

shelllquartet module.make_ ssfs

__rem pio2
shelllquartet_module.make r jk_abcd
_malloc_unlocked

shelllquartet module.form esps no_rm _
shell2 module.normalise ft
rys_module.get_weights2_ t2

FNMNMNMNWMOORREPFMNMWOAOANOWORAEDWO®

HFHERRERRERRERRERENMNOMNNOMNRNNNWWO®

470.1bm (C program)

99.

Very peaky profile. Top subroutine is 95 LOC. Very small
overall static size, from a research environment. Together
with the high memory pressure, the peaky profile and the
small size may create incentives for special-case optimiza-
tions.

3

LBM performStreamCollide

481.wrf (C/Fortran program)

16.

[y

RFFRFRFRPENMNNMNMNDNNNNDMNDNOWOWWESSOGO

NNwowowuuoonowOwREERERONROOOU WO

.6

module advect em.advect scalar
_mcount

module small step em.advance uv_
__powf

module small step em.advance w_
module big step utilities_em.calc _cq_
module small step em.advance mu t
mcount_single

module em.rk update scalar

module small step em.calc_p rho_
module advect em.advect u

module small step_em.small step prep_
module advect em.advect w_

module small step em.sumflux

module advect em.advect v_

module big step utilities_em.zero_tend
module bl ysu.ysu2d_

__f95 signf

module big step utilities_
em.horizontal pressure gradient_
module big step utilities_em.rhs ph

482.sphinx3 (C program)

37.

9

24.5

9.

RERFRERNMNMNNMDNDO©
NWwWwowokr ulm oo

mgau_eval

vector_ gautbl eval logs3
_mcount
subvq_mgau_shortlist
approx_cont_mgau_ frame eval
mcount_single

mdef sseg2sen_active
_memset
dict2pid_comsenscr
logs3_add

approx_mgau eval

Somewhat peaky profile, top subroutine is about 90 LOC

Some Concluding Remarks

One of the initial goals for CPU2006 was that the pro-
gram should not spend more than 5% of its time outside of
the supplied source code. If the benchmark profile is con-
centrated in the supplied code, there is more clarity as to
what is being tested, and one may reduce the use of plat-
form-specific, narrowly targeted code as may be found in
some highly tuned platform libraries.

It can easily be seen that this 5% threshold was not met
in a number of cases. Each case has led to a discussion in the
subcommittee. When the program survived the selection
process nonetheless, it was because of arguments such as (a)
memory management operations (allocate, free, copy, clear)
are commonly used in real life applications, for example by
contemporary codes that instantiate and destroy objects as
needed. (b) exponentiation is commonly used in quantum
chemistry; that’s simply a fact of life for the application
area; (c) although a benchmark may show library time on
one tested platform, that may be an artifact of that platform,
rather than the fault of the code. In several cases, percent-
ages varied widely between operating systems.

During development of CPU2006, benchmarks with
“peaky” profiles (i.e. those with a high percentages for some
subroutine) were of special interest. The subroutines in
question were checked for aspects such as size (number of
source lines), programming style, and cache misses. Some-
times, these observations and a review of the program’s doc-
umentation indicated that a high locality just cannot be
avoided for particular application areas. On the other hand, if
compiler optimizations for the top subroutines of a program
speed up a particular program to an unexpected degree, read-
ers of benchmark results should check carefully whether
such optimizations are useful for a larger set of programs.
Note that SPEC requires that optimizations not be too nar-
rowly targeted; see the CPU2006 Run Rules, [3], especially
section 1.4.

Authors’ Roles

The first author (RW) collected profiles through many
baselevels of CPU2006 and provided frequent commentary
to the subcommittee. During development of CPU2006, he
served as the primary source of questions about peaky pro-
files. For this paper, he collected profiles for the majority of
the benchmarks, namely those using method (1) in the
“Methods” section, above. He wrote the first draft of this
paper.

During CPU2006 development, the second author (JH)
profiled many baselevels of the suite to determine whether
the 5% criterion was met, and encouraged discussion about
exceptions. For this paper, he contributed the profiles that
used method (2), provided additional commentary, and edit-
ed the final draft.

Disclaimer

Opinions expressed in this article are personal opinions
and do not necessarily reflect either SPEC or an employer’s
official policy.

References

[1] For information on collect, er print, and related utilities
see http://developers.sun.com/sunstudio/analyzer in-
dex.html

[2] John L. Henning (ed.), “SPEC CPU2006 Benchmark De-
scriptions”, Computer Architecture News, Volume 34,
No. 4, September 2006.

[3] www.spec.org/cpu2006/docs/runrules.html

http://www.spec.org/cpu2006/docs/runrules.html
http://developers.sun.com/sunstudio/analyzer_index.html
http://developers.sun.com/sunstudio/analyzer_index.html

	Subroutine Profiling Results for the CPU2006 Benchmarks
	Subroutine Profiling
	Profile variability
	Methods
	Results for the Integer Benchmarks CINT2006
	Some Concluding Remarks
	Authors’ Roles
	Disclaimer
	References

