

User Guide

SPECpower_ssj2008

Standard Performance Evaluation Corporation

SPEC – Power and Performance

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 2 of 34 Copyright © 2007 - 2012 SPEC

Table of Contents
1 Introduction .. 4

1.1 Preface ... 4
1.2 General Concepts .. 4
1.3 The SPECpower_ssj2008 Benchmark Suite ... 4
1.4 The Hardware Components .. 5

2 Installation and Setup of SPECpower_ssj2008 ... 6
2.1 Hardware Setup .. 6

Power Analyzer ...6
2.2 Software Installation ... 7

Java Runtime Environment (JRE) Set-up ...7
2.3 Network Setup ... 8

System Under Test (SUT)...8
System Under Test (SUT)...9

2.4 Running the JVM Director Remotely .. 10
The JVM Director Run Script .. 10
Remote JVM Director: SUT ... 10
Remote JVM Director: Controller System ... 10
Controller System .. 10

2.5 Trial Run of SPECpower_ssj2008 ... 11
Controller System .. 11
Start the Trial Run ... 11
System Under Test (SUT).. 12

3 Running SPECpower_ssj2008 .. 17
Running SPEC_power in a multi-node configuration ... 17
Inventory of Operating System Services ... 19

4 Operational Validity .. 19

5 Metric .. 19
5.1 SPECpower_ssj2008 Metric ... 19

6 Results Reports ... 20
6.1 Overview .. 20
6.2 The CSV file .. 20

CSV File Naming Convention ... 20
CSV File Format.. 21

6.3 The RAW File... 22
Raw File Format ... 22

6.4 The Reporter .. 24
Running the Reporter Manually ... 24

6.5 The HTML File(s) .. 24
HTML File Naming Convention ... 25
Overall HTML Results File Format .. 25

6.6 The SSJ Results Files ... 26
The RAW Files ... 26
The LOG File ... 26
The RESULTS File .. 26
The TXT File .. 27

7 Visual Activity Monitor (VAM) .. 27
Global Settings .. 30
Screen Size and Location .. 30
Title Panel and Text ... 30

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 3 of 34 Copyright © 2007 - 2012 SPEC

Chart Panel Example ... 31
Freeze Button Example .. 31

8 Performance Tuning ... 33

9 Submitting Results .. 34

10 Disclaimer ... 34

SVN Revision: 1137

SVN Date: 2012/05/30 12:32:29

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 4 of 34 Copyright © 2007 - 2012 SPEC

1 Introduction

1.1 Preface

SPECpower_ssj2008 is a benchmark product developed by the Standard Performance

Evaluation Corporation (SPEC), a non-profit group of computer vendors, system

integrators, universities, research organizations, publishers, and consultants. It is

designed to provide a view of a server system's power consumption running Java server

applications.

This practical guide is intended for people that wish to setup and run the

SPECpower_ssj2008 benchmark in order to accurately measure the power consumption

of their server in relation to the server‟s performance.

Updates and the latest version of this User Guide can be found here:

http://www.spec.org/power/docs/SPECpower_ssj2008-User_Guide.pdf.

In order to submit SPECpower_ssj2008 results, the licensee must adhere to the rules

contained in the Run and Reporting Rules

(http://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html)

which is included in the benchmark kit.

Be sure to read, understand and follow all the safety rules that come with your Power

Analyzer and compute equipment

1.2 General Concepts

1.3 The SPECpower_ssj2008 Benchmark Suite

SPECpower_ssj2008 consists of three main software components:

 Server Side Java (SSJ) – Workload

o The SSJ-Workload is a Java program designed to exercise the CPU(s),

caches, memory, the scalability of shared memory processors, JVM (Java

Virtual Machine) implementations, JIT (Just In Time) compilers, garbage

collection, and other aspects of the operating system of the SUT.

o For more information on SSJ ->

http://www.spec.org/power/docs/SPECpower_ssj2008-Design_ssj.pdf

 Power and Temperature Daemon (PTDaemon)

o The Power and Temperature Daemon is to offload the work of controlling a

power analyzer or temperature sensor during measurement intervals to a

system other than the SUT.

o For more information on PTDaemon ->

http://www.spec.org/power/docs/SPEC-PTDaemon_Design.pdf

 Control and Collect System (CCS), including the Visual Activity Monitor (VAM)

o CCS is a multi-threaded Java application that controls and enables the

coordinated collection of data from multiple data sources such as a

workload running on a separate SUT (System Under Test), a power

analyzer, and a temperature sensor.

o VAM is a software package designed to display activity from one, two, or

three SUT‟s simultaneously, in combination with the SPECpower_ssj2008

benchmark.

o For more information on CCS and VAM ->

http://www.spec.org/power/docs/SPECpower_ssj2008-Design_ccs.pdf

http://www.spec.org/power/docs/SPECpower_ssj2008-User_Guide.pdf
http://www.spec.org/power/docs/SPECpower_ssj2008-Run_Reporting_Rules.html
http://www.spec.org/power/docs/SPECpower_ssj2008-Design_ssj.pdf
http://www.spec.org/power/docs/SPECpower_ssj2008-Design_ssj.pdf
http://www.spec.org/power/docs/SPEC-PTDaemon_Design.pdf
http://www.spec.org/power/docs/SPEC-PTDaemon_Design.pdf
http://www.spec.org/power/docs/SPECpower_ssj2008-Design_ccs.pdf

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 5 of 34 Copyright © 2007 - 2012 SPEC

1.4 The Hardware Components

The following components work together to collect a server‟s power consumption and

performance data by exercising the SUT with a predefined workload.

The most basic SPECpower_ssj2008 test bed implementation consists of these four

hardware devices:

 Server Under Test (SUT)

The SUT is the system that will be driven by the SSJ workload. The SUT‟s

performance and power consumption characteristics will be captured and measured

by the benchmark.

 Power Analyzer

The power analyzer is used to measure and record the power consumed by the SUT.

 Temperature Sensor

The temperature sensor is used to capture the temperature of the environment where

the SUT is being benchmarked.

 Controller System

The controller system is a separate system that runs the CCS and Power and

Temperature Daemon (PTD) portions of the SPECpower_ssj2008 benchmark suite.

Figure 1.2-1 illustrates the architecture of a simple SPECpower_ssj2008 benchmark

implementation.

Figure 1.2-1

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 6 of 34 Copyright © 2007 - 2012 SPEC

2 Installation and Setup of SPECpower_ssj2008

This section will go over the installation and setup procedures for a minimum

SPECpower_ssj2008 implementation consisting of:

 one server under test

 one power analyzer and one temperature sensor

o The PTD can connect to and collect data from either a power analyzer or a

temperature sensor, but the user must initialize a PTD instance for each device

.

 one benchmark controller system

2.1 Hardware Setup

2.1.1.1 Power & Temperature Daemon (PTDaemon)

In this simple SPECpower_ssj2008 implementation, it is assumed that the PTD instance

for the power analyzer and the PTD instance for the temperature sensor are residing

locally on the controller server as illustrated in figure 1.3.3. By default, the run scripts for

PTD will run the PTD executable in "dummy mode". Dummy Mode is a mode of operation

for PTD in which it will return false power and temperature readings during the

benchmark run. Like the SSJ and CCS modules of the SPECpower_ssj2008 benchmark,

the PTD module also uses run scripts. Therefore, two concurrent instances of PTD must

be run; one for communication with the power analyzer, and one for communication with

the temperature sensor. These run scripts are recommended for starting the PTD

modules.

There is a run script for initializing an instance of PTD for a power analyzer named

runpower.bat for Windows or runpower.sh for Unix. There is a run script for a

temperature sensor named runtemp.bat for Windows or runtemp.sh for Unix. It should

be noted that PTD also supports General Purpose Interface Bus (GPIB) connectivity.

Modifications of these variables the user may be interested in are as follows:

 The model of power analyzer or temperature sensor to be used in the test bed

implementation.

The device model, for the temperature sensor or for the power analyzer, is

specified with an integer value.

To find out which integer value corresponds to the device being used within the

test bed, Use the command prompt to change to the directory of the PTD

executable, and run the PTD executable for your operating system without

arguments.

This will cause PTD to display a list of supported power and temperature devices,

along with their corresponding integer values. Find and make note of the values

that apply to the devices being used within the test bed.

Power Analyzer

Before selecting a power analyzer for the SPECpower_ssj2008 test bed, please consult

the Power Analyzer Minimum Requirements.

Please consult the manufacturer‟s documentation for instructions that are specific to the

exact analyzer used.

1. Once you have correctly associated the Device number with the corresponding

integer values that apply to those devices

2. Connect the communication interface of the power analyzer to the appropriate

port of the controller server with a manufacturer-approved cable.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 7 of 34 Copyright © 2007 - 2012 SPEC

3. Open runpower.bat for Windows or runpower.sh for Unix with a text editor, and

locate the set DEVICE= variable for the runpower script respectfully. Enter the

correct device number for the power analyzer being used.

o set DEVICE=8 (for Windows & Unix)

4. Now enter the DEVICE_PORT that the PTD uses to communicate with Controller

system.

o set DEVICE_PORT=COM1 (for Windows)

o set DEVICE_PORT=/dev/tty2 (for Unix)

5. To verify what port the power analyzer is using you may left-click my computer,

click Manage. Click Device Manager and then click Ports this should give you a list

of all the ports attached to your computer at that time. Verify the port the power

analyzer is connected to.

6. Set power analyzer communication settings as required by the Hardware Setup

Guide (http://www.spec.org/power/docs/SPEC-

Power_Measurement_Setup_Guide.pdf).

7. Connect the SUT‟s AC power cord to the power receptacle provided by the power

analyzer.

2.1.2 Temperature Sensor

Before selecting a temperature sensor for the SPECpower_ssj2008 test bed, please

consult the Temperature Sensor Minimum Requirements.

The temperature sensing device must be secured 50mm from the center of the inlet for

airflow of the equipment being benchmarked, please refer to SPECpower_ssj2008 Run

and Reporting Rules.

Please consult the manufacturer‟s documentation for instructions that are specific to the

exact sensor used.

1. Place the temperature sensor in accordance with the rules outlined in this

section.

2. Connect the temperature sensor‟s communication interface to the appropriate

port on the controller server with a manufacturer-approved cable.

3. Open runtemp.bat for Windows or runtemp.sh for Unix with a text editor, and

locate the set DEVICE= for the runtemp script respectfully. Enter the correct

device number for the temperature sensor being used.

o set DEVICE=1001 (for Windows & Unix)

4. Also locate the set DEVICE_PORT= for the runtemp script respectfully. Enter the

correct port number used to connect the temperature sensor.

o set DEVICE_PORT=USB (for Windows)

o set DEVICE_PORT=/dev/tty1 (for Unix)

5. Verify what port the temperature sensor is using you may left-click my

computer, click Manage. Next click Device Manager and then click Ports this

should give you a list of all the ports attached to your computer at that time.

Find the port that the temperature sensor is connected to.

2.2 Software Installation

Java Runtime Environment (JRE) Set-up

Before proceeding it is the responsibility of the user to select a suitable Java Runtime

Environment (JRE) (version 1.5 or later) is installed on the SUT. There are a variety of

JREs available from a number of different vendors.

Also note: The JRE is the only auxiliary software that must be installed within the

benchmark environment with the SPECpower_ssj2008 benchmark suite. No additional

database or web server components are required.

http://www.spec.org/power/docs/SPEC-Power_Measurement_Setup_Guide.pdf
http://www.spec.org/power/docs/SPEC-Power_Measurement_Setup_Guide.pdf

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 8 of 34 Copyright © 2007 - 2012 SPEC

The installation program is written in Java, and will therefore require a Java interpreter in

order to run. To invoke the setup program:

1. Change to the root directory of the installation CD.

2. Call the command:
 java –jar setup.jar [options]

The options to pass into the setup program are as follows:

To run in GUI mode (for Windows), simply type:
 java -jar setup.jar

To run in CONSOLE mode, type:
 java -jar setup.jar -i console

To run in CONSOLE + SILENT mode (where the installer option panels are

bypassed and the benchmark will be installed in the default install dir,

/SPECpower_ssj2008 on Unix or <SYSTEM_DRIVE_ROOT>:\SPECpower_ssj2008

on Windows):
 java -jar setup.jar -i silent

To run in CONSOLE + SILENT mode with an install dir of the user‟s choosing, for

example, /power_ssj2008:
 java -jar setup.jar -i silent -DUSER_INSTALL_DIR=/power_ssj2008

The exact location within the OS directory structure into which the SPECpower_ssj2008

suite is to be installed is subject to the user's discretion. The user must either add the

path to the Java executable to the PATH environment variable (consult the

documentation of the OS for instructions), or invoke the Java interpreter with the fully

qualified path and filename.

For example:
 C:\Java\AcmeSuperJava-v0.15\bin\java.exe -jar setup.jar

or
 /usr/java/AcmeSuperJava-v0.15/bin/java –jar setup.jar –i console

as appropriate to the OS being used.

To define the environmental variables: Right-click My Computer, select Properties, Select

the Advanced tab, select Environmental Variables, select PATH, and click edit. At the end

of the list, place the path to the java.exe of the bin directory that the Java software was

installed. IE: C:\Java\AcmeSuperJava-v0.15\bin\java.exe. Also add .JAR to the

pathext.

An easy way to test for this is simply to type java -fullversion from a command

prompt (and from within a directory that does NOT contain the Java executable). If the

Java executable is indeed specified in the PATH environment variable, then the output of

this command should specify the version of the JRE currently installed on the SUT. If it

instead returns an error, then the path to the Java executable is not correctly specified in

the PATH environment variable.

2.3 Network Setup

System Under Test (SUT)

For a valid SPECpower_ssj2008 benchmark implementation, there is a set of physical

environment criteria that must be satisfied. Please consult the Run and Reporting Rules

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 9 of 34 Copyright © 2007 - 2012 SPEC

in order to ensure that the environment in which the benchmark is taking place meets

the minimum requirements.

Ensure that power is properly routed to the SUT through the power analyzer only.

Please note: the SUT cannot receive power from any source other than that which

is provided by the power analyzer. For example, the other power supply/supplies

may not be connected to any power source other than that which is provided by

the power analyzer. Refer to Quick Start guide

Connect the network interface of the SUT so that it will establish a TCP/IP connection

with the controller server.

Configure the operating system‟s TCP/IP such that the SUT is on the same subnet as the

controller. Also disable the firewall for both systems to allow them to communicate

through TCP/IP. Try Ping to see if the IP of the SUT to see if they can converse through

TCP/IP. Consult the operating system‟s documentation for specific instructions regarding

this procedure. In consideration of the data sources that CCS will be connecting to,

ensure that the controller server‟s TCP/IP interface(s) is configured so that reliable

TCP/IP communication can be established with all data sources.

System Under Test (SUT)

The SPECpower_ssj2008 software uses the Java interpreter to run, so the user must

ensure that the java interpreter can be found by the benchmark. There are two ways to

accomplish this:

Add the fully qualified path of the Java executable to the run script. (Note that the

user may also elect this method for the purpose of overriding the Java executable

path that is specified in the PATH environment variable.)

1. Change to the SSJ directory and open runssj.bat (for Windows) or runssj.sh

(for Unix) with a text editor.

2. For runssj.bat, locate the line set JAVA=java and replace java with the fully

qualified path to the java executable. For example:
 set JAVA=c:\Java\AcmeSuperJava-v5.30\bin\java.exe

3. For runssj.sh, locate the line JAVA=java, and replace java with the fully

qualified path to the java executable. For example:
 JAVA=/usr/java/AcmeSuperJava-v5.30/bin/java

4. Save and close the file.

The recommended (and simplest) method for starting the SSJ iteration is to use the

sample run script that came with the SPECpower_ssj2008 distribution.

1. Change to the directory in which the SSJ workload module was installed.

2. Run the file, runssj.bat or runssj.sh, as appropriate to your operating system.

Please note: it is the responsibility of the user to inspect the sample run script files for

any commands, parameters, or variables that may need to be modified for the particular

environment under which the workload is being run.

For Windows, when the workload instance is ready, it will display the text SSJ instances

ready for connection. This means that the SSJ workload is now waiting for the

command from CCS to start.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 10 of 34 Copyright © 2007 - 2012 SPEC

For Unix, the STDOUT is not output to the console by default. Nonetheless, running

runssj.sh will start the SSJ iteration.

2.4 Running the JVM Director Remotely

As mentioned, the JVM Director need not necessarily be run on the SUT. This section will

very briefly go over the steps to configure the test bed for running the JVM Director on

the controller system. This method is an alternative from the default method, and is

entirely optional.

The JVM Director Run Script

Like most other components of SPECpower_ssj2008, a run script is provided with the kit

with which to initiate the JVM Director. The default name of the script is

rundirector.bat or rundirector.sh, and it is located under

…/SPECpower_ssj2008/ssj. To start the director, simply call the rundirector script from

the command line.

In order for Director to successfully connect to the SUT, the SUT must know the IP of the

Director:

Remote JVM Director: SUT

1. On the SUT, open the SSJ run script (runssj.bat or runssj.sh) for editing.

2. Locate the LOCAL_DIRECTOR= variable. It should equal FALSE, if the Director is on

another system change FALSE to TRUE, and fill in the IP address of the

DIRECTOR_HOST to the controller IP address used.

3. Save and close the SSJ run script.

4. Open the control properties file, SPECpower_ssj_EXPERT.props, for editing.

5. Uncomment (remove „#‟) the variable input.director.hostname, and change its

value from localhost to the hostname or IP address of the system that will be

running the JVM Director (for this example, the controller system).

6. Save and close SPECpower_ssj_EXPERT.props.

7. Open the descriptive properties file, SPECpower_ssj_config.props, for editing.

8. Change the property config.director.location to reflect the system on which

the JVM Director will be running. In this example, Controller.

9. Save and close SPECpower_ssj_config.props.

Remote JVM Director: Controller System

1. Open the CCS properties file, ccs.props, for editing.

2. Change the property ccs.wkld.ssj_dir.IP to the hostname or IP address of the

system that will be hosting the JVM Director. For this example, the controller

system which is localhost or 127.0.0.1.

3. Save and close ccs.props.

Controller System

Please see SPECpower_ss2008j Run and Reporting Rules for a list of minimum system

requirements for the controller server. Connect the network interface of the controller

server so that it can establish a TCP/IP connection with the SUT, refer to section 2.4.

System Under Test (SUT).

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 11 of 34 Copyright © 2007 - 2012 SPEC

Before proceeding it is the responsibility of the user to select a suitable Java Runtime

Environment (JRE) (version 1.5 or later) is installed on the Controller system. There are a

variety of JREs available from a number of different vendors. It is the responsibility of the

user to select a suitable JRE for the benchmark environment. (Please refer to section

2.2.1 Java Run-time Environment)

2.5 Trial Run of SPECpower_ssj2008

After successful installation of the SPECpower_ssj2008 benchmark suite on the Controller

System and the SUT, the user may be interested in starting a trial run of the benchmark.

This will ensure that all of the fundamental components of the test bed are functioning

properly. This section will go over the steps involved in doing so. Please note that the

CCS and SSJ modules will, by default, wait for 300 seconds (5 minutes) for a connection

with the JVM Director. If the JVM Director is for some reason not initiated sooner than

300 seconds after either the SSJ workload module or the CCS module is initiated, then

the module will time-out and terminate with an error and will then need to be restarted.

2.5.1.1 Director

As was done for the SSJ modules on the SUT, the user must ensure that the Java

executable is accessible for the Director module on the Controller System as well. The

Java interpreter must be accessible via either the PATH environment variable of the OS,

or by specifying the fully qualified path to the Java executable in the run script.

1. Change to the SSJ directory within the benchmark suite and edit

rundirector.bat (for Windows) or rundirector.sh (for Unix).

2. For rundirector.bat, locate the line set JAVA=java, and replace java with

the fully qualified path to the Java executable. For example:
 set JAVA=c:\Java\AcmeSuperJava-v5.30\bin\java.exe

3. For rundirector.sh, locate the line JAVA=java, and replace java with the fully

qualified path to the Java executable. For example:
 JAVA=/usr/java/AcmeSuperJava-v5.30/bin/java

4. Save and close the file.

2.5.1.2 Control and Collect System (CCS)

Controller System
The controller server runs the CCS module of the SPECpower_ssj2008 benchmark suite.

CCS is a Java based application, therefore the user should ensure that a suitable Java

Runtime Environment (version 1.5 or later) is properly installed on the controller server

before proceeding.

The user must ensure that the Java executable is accessible for the CCS module on the

Controller System as well.

1. Change to the CCS directory within the benchmark suite and open runCCS.bat

(for Windows) or runCCS.sh (for Unix) with a text editor.

2. For runCCS.bat, locate the line set JAVA=java, and replace java with the fully

qualified path to the Java executable. For example:
 set JAVA=c:\Java\AcmeSuperJava-v5.30\bin\java.exe

3. For runCCS.sh, locate the line JAVA=java, and replace java with the fully

qualified path to the Java executable. For example:
 JAVA=/usr/java/AcmeSuperJava-v5.30/bin/java

4. Save and close the file.

Start the Trial Run

Now the trial run is ready to be started:

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 12 of 34 Copyright © 2007 - 2012 SPEC

1. Use the run script to start the PTD instance for the temperature sensor by

changing to the PTD directory and running runtemp.bat or runtemp.sh as

appropriate to the OS. This will start the Temperature deamon instance.

2. Use the run script to start the PTD instance for the power analyzer by changing

to the PTD directory and running runpower.bat or runpower.sh as appropriate

to the OS. This will start the Power daemon instance.

3. On the SUT, change to the SSJ directory, and run runssj.bat (for Windows) or

runssj.sh (for Unix). SPECpower_ssj2008 workload iteration will start up, and

wait for a connection from the Director.

4. On the controller server, change to the SSJ directory, and run rundirector.bat

(for Windows) or rundirector.sh (for Unix).

5. Next on the controller server, change to the CCS directory, and use the run

script runCCS.bat or runCCS.sh, as appropriate to the OS, to start the CCS

iteration.

This will start the SPECpower_ssj2008 trial run, and will take approximately 73 minutes

to complete. The purpose of the trial run is to identify possible issues with the

benchmark test bed implementation. If the procedures in this section were followed

correctly, and problems are still encountered during the trial run, then issues are native

to the test bed that must be resolved in order for SPECpower_ssj2008 to run properly.

It should be understood that the number of possible complications that can be

encountered with any test bed implementation can be quite numerous, ranging from OS

installation issues, to network problems, to Java Runtime Environment issues. The entire

spectrum of troubleshooting procedures for any server/networking environment, are

immense therefore troubleshooting procedures for any particular test bed implementation

fall outside the scope of this document.

Software Setup

Having completed a trial run of the benchmark, the user should now learn what variables

are, and where to find and change them in the run scripts and properties files.

System Under Test (SUT)

2.5.1.3 Properties Files: Overview

The SSJ module takes two properties files as input:

A control properties file: The control properties file is used to modify the operation of

the benchmark descriptive properties file

o The descriptive properties file is used to document the SUT, documentation is

required for publishable results, and is reflected in the output files.

The control properties files come in two different forms: basic and advanced. It is up to

the user to decide which one to use for the benchmark run (this will be covered in

greater detail in the next section). The values of the descriptive properties file do not

affect the workload. The default file name for the descriptive properties file is

SPECpower_ssj_config_sut.props.

Before modifying these files, it is good practice to first make a copy of the originals to

enable easy recovery of the default benchmark configuration. The control properties file

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 13 of 34 Copyright © 2007 - 2012 SPEC

can be renamed to any name desired by the user providing that the user updates the set

PROPFILE=, or the PROPFILE=, variable in the runssj.bat or runssj.sh file. The

descriptive properties files can also be changed to any name desired by the user.

2.5.1.4 Properties Files: Format

The properties files are in plain-text ASCII format, and can be easily edited with most

popular text editors. Each line of a properties file is one of three types:

 a blank

 a comment

Any text following a # character will be ignored by the benchmark

 a property assignment

Each property assignment is of the form name=value, where "name" is the

property identifier (the terms "name" and "variable" are used interchangeably).

Variable names are specific to the benchmark and must not be changed. "value" is the

actual value that is assigned to the property. A value can take the form of an integer, a

string of text, or a boolean value depending on the property type. The SSJ workload

engine takes these property values as input for the benchmark iteration.

As mentioned previously, the control properties file comes in two forms:

 a basic control properties file whose default name is SPECpower_ssj.props

 an advanced control properties file whose default name is
SPECpower_ssj_EXPERT.props

The basic control properties file contains just a few basic parameters for the SSJ run.

This properties file is more suitable for beginners, or simply for benchmark

implementations that are relatively simple.

The advanced properties file contains quite a large number of additional parameters that

the user may elect to modify for the benchmark run.

Please note that there are also a number of control properties whose values must not be

changed in order for the SPECpower_ssj2008 result to be publishable. See the Run and

Reporting Rules for more information.

2.5.1.5 Control Properties: SSJ

One of these files must be selected for use with the benchmark run by setting the

PROPFILE= variable in the SSJ run.

For simplicity, only those parameters that are the most pertinent to the discussion of the

basic concepts of the SSJ workload will be covered in this section.

The properties are contained in basic SPECpower_ssj.props file contains only the

following:

 input.load_level.number_warehouses

 input.calibration.interval_count

 input.director.hostname

 input.status.port

 input.include_file

 input.output_directory

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 14 of 34 Copyright © 2007 - 2012 SPEC

 Length of the run

The user can change the amount of elapsed time that it will take to complete the

run. It should be understood that while these parameters can be adjusted, there

are restrictions on which values can be altered, and how much they can be altered

for publishable results. Please see SPECpower_ssj2008 Run and Reporting Rules

for details.

o input.load_level.length_seconds: This is the number seconds that

each target load will run for. The default is 240. Remember, the

benchmark run will iterate through several target loads; thus for m target

loads and n seconds, m*n total seconds will be added to the length of the

run.

o input.calibration.interval_count: This specifies the number of

calibration intervals that the benchmark will iterate through before the

measurement intervals. More calibration intervals will increase the run

time of the benchmark.

o input.calibration.length_seconds: This is the number of seconds that

each calibration interval will run for. The default is 240 seconds.

o input.idle.length_seconds: This is number of seconds that the active

idle measurement interval will run for. The default is 240 seconds.

 How the workload instance(s) communicate with the JVM Director

The JVM workload instance(s) communicate with the JVM Director via TCP/IP

socket communication. The JVM Director can be run locally on the SUT, or it can

be run remotely.

o input.director.hostname: Use this property to inform the SSJ workload

engine of the network hostname of the system running the JVM Director

instance. By default, the JVM Director will run locally on the SUT, and the

default value of this property will be “localhost”. This value can take the

form of an IP address as well.

 How the benchmark reports results

input.include_file: Use this property to specify the name of the descriptive

properties file that is to be used when writing the results reports. The default is

SPECpower_ssj_config.props.

o input.output_directory: Use this property to specify the directory into

which SSJ will store the results reports, and the user must ensure that the

SSJ module has sufficient access and write credentials for the directory

specified.

 Number of concurrent threads / warehouses

There is a one to one relationship of threads to warehouses.

o ccs.load_level.number_warehouses: Modify this property in order to

change the number of concurrent warehouses (and consequently the

number of concurrent threads) that will be run per JVM instance

throughout the benchmark iteration.

 How the JVM Director communicates with CCS

The JVM Director communicates with CCS on the controller server via TCP/IP

socket communication.

o input.director.enabled: To enable or disable communication with CCS,

set this property to true or false. If set to false, the workload will run in

stand-alone mode (without intervention from CCS. Used only for testing or

debugging purposes). If set to true (necessary for a valid run), then the

workload iteration will not start until instructed to do so by CCS, and will

subsequently continue to be polled and controlled by CCS throughout the

benchmark iteration.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 15 of 34 Copyright © 2007 - 2012 SPEC

o input.director.port: Use this property to specify the TCP port on which

CCS will attempt initiate communication. This will tell the JVM Director

what TCP port to listen on for CCS.

2.5.1.6 Descriptive Properties

The descriptive properties file contains all of the information about the SUT including the

hardware configuration, software and operating system configuration, benchmark

configuration, tuning information and any other notes about the SUT. The properties in

this file must be accurate for a valid, publishable run. As mentioned previously, the

default filename of the descriptive properties file is SPECpower_ssj_config.props. This

file is called by the reporter upon completion of the benchmark iteration, and is used by

the reporter to generate the results output files. The reporter and output files will be

explained in further detail in section 6. The descriptive properties file is extremely self-

explanatory. More information about the descriptive properties file can be found in

appendix A.

2.5.1.7 Network Configuration: System Under Test (SUT)

Refer to section 2.4 to configure the operating system‟s TCP/IP implementation such that

the SUT can communicate with the controller server. Consult the operating system‟s

documentation for specific instructions regarding this procedure.

2.5.1.8 Control Properties: Control and Collect System

Similar to the architecture of the SSJ module on the SUT, the CCS module reads a plain

text properties file for its control configuration. In the case of CCS, however, no

descriptive properties file is used. Instead, the descriptive properties that are particular

to the CCS and PTD implementation are also contained in the control properties file. The

default name for the properties file is ccs.props. Just like SSJ‟s properties files, the CCS

properties file may be renamed at the user‟s discretion, provided the proper variable is

updated in the run script. The ccs.props file is used to control all configurable

parameters of the CCS module of SPECpower_ssj2008, including:

 The names of the data sources to which CCS will connect

There are three types of data sources that CCS can connect to and collect data

from: An SSJ workload instance (on the SUT), a power analyzer (via a PTD

instance) and a temperature sensor (via an additional PTD instance).

ccs.ptd: Set this property to define the name of the power analyzer and

temperature sensor data sources. Refer to SPEC_power-design_CCS section

2.1.2. The syntax for specifying these data sources is source1, source2. For

example:
 ccs.ptd = pwr1, temp1

 TCP/IP communication with the data sources

CCS utilizes TCP/IP socket connections in order to communicate with the other

SPECpower_ssj2008 modules within the test bed. In order for CCS to establish

these communication paths, the TCP/IP information for each data source must be

specified. For example: Suppose the SSJ workload data source was assigned the

name MyWorkload with the property assignment

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 16 of 34 Copyright © 2007 - 2012 SPEC

ccs.wkld = MyWorkload

Now that this workload has been defined, CCS needs to know how to establish a

connection with the workload. Assume that the IP address of the SUT is

192.168.1.3 and that the JVM Director on the SUT has been configured to listen

for CCS on TCP port 8886 (default). To achieve communication, enter the

following properties like this:

ccs.wkld.MyWorkload.type = SSJ

ccs.wkld.MyWorkload.IP = 192.168.1.3 or localhost

ccs.wkld.MyWorkload.Port = 8886

Where the JVM Director is to be run is subject to the sole discretion of the user.

For this example test bed, define the other two data sources: the power analyzer

and the temperature sensor.

Use the ccs.ptd property to define the power analyzer and temperature sensor

data sources respectively:

ccs.ptd = MyPower,MyTemp

Now that these data sources have been defined, CCS needs to know how to

connect to the data sources. This is achieved in the same manner in which the

SSJ connection information was defined:

ccs.pwr.MyPower.type = PowerMeter

ccs.pwr.MyPower.IP = localhost

ccs.pwr.MyPower.Port = 8888

ccs.temp.MyTemp.type = TempSensor

ccs.temp.MyTemp.IP = 127.0.0.1

ccs.temp.MyTemp.Port = 8889

Since, for this example, both PTD instances for the power analyzer and the

temperature sensor are being run locally on the controller server (remember, they

may be run remotely if so desired), both network paths are set to the local

machine (localhost or 127.0.0.1). Both the hostname, localhost, and the IP

address, 127.0.0.1, are used in this example to illustrate that either a host name

or an IP address may be used in the properties file.

The sample ccs.props file that comes with the distribution already contains sample

properties for the different data sources. The user need only modify the existing sample

properties for a benchmark setup.

 The descriptive properties of the CCS and PTD implementation.

The descriptive properties contained in the ccs.props file are very self-

explanatory. Below is an excerpt from a sample ccs.props file:

ccs.config.hw.vendor=Hoover

ccs.config.hw.model=SuperStation Deluxe

ccs.config.hw.cpu=StrongARM SA-110

ccs.config.hw.cpu.characteristics=200MHz 16KB/16KB MMU

ccs.config.hw.memory.gb=2

ccs.config.sw.os=Amiga OS

ccs.config.sw.jvm.vendor=Acme

ccs.config.sw.jvm.version=AcmeSuperJava 5.30

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 17 of 34 Copyright © 2007 - 2012 SPEC

ptd.pwr1.config.analyzer.vendor=Eureka

ptd.pwr1.config.analyzer.model=Power Cyclone

ptd.pwr1.config.analyzer.serial=1234567

ptd.pwr1.config.analyzer.connectivity=Serial Port

ptd.pwr1.config.calibration.institute=NIST

ptd.pwr1.config.calibration.accredited_by=Jane

ptd.pwr1.config.calibration.label=NIST label

ptd.pwr1.config.calibration.date=Jan-1-07

ptd.pwr1.config.ptd.system=Controller System

ptd.pwr1.config.ptd.os=Amiga OS

ptd.temp1.config.sensor.vendor=Acura

ptd.temp1.config.sensor.model=NS Thermal X

ptd.temp1.config.sensor.driver=1.2.3.4

ptd.temp1.config.sensor.connectivity=USB

ptd.temp1.config.ptd.system=Controller System

ptd.temp1.config.ptd.os=Amiga OS

Modify each descriptive property so as to accurately reflect the CCS and PTD

implementation.

3 Running SPECpower_ssj2008

After completing the setup procedures in section 2, the benchmark is ready to run.

If the user has not already done so, it is a good idea to initiate a trial run of the

benchmark to ensure that SPECpower_ssj2008 benchmark suite is installed and

configured correctly. See section 2.5 for instructions on how to initiate a trial run.

Running SPEC_power in a multi-node configuration

1. When setting up a multi-node configuration, the minimum requirement for a

this configuration includes a single power analyzer and temperature sensor .The

user must attempt to characterize the power consumption of the SUT. This

information will help determine the number of power analyzers the user will

need. Perhaps the quickest method is to calculate the sum of the current

ratings, as specified by the manufacturer, for each device for which power will

be measured. Also select a temperature sensor that has been accepted by

SPEC. Please consult the manufacturer‟s documentation for instructions that are

specific to the exact analyzer or temperature sensor used.

2. Connect the power analyzer or temperature sensor using RS-232, GPIB, or any

USB connections. If needed use a hub that is OS supported. This will only make

it easier to connect two devices to your controller system.

3. Locate within the CCS.pros file Data Source Entries, under this section there

is a variable named CCS.ptd. This variable allows CCS to know the devices that

are trying to communicate with the controller system. This is a comma

separated variable, that must have the same number of power

analyzers/temperature sensors that you are directly connecting to the

controller. If a second power analyzer is needed the second power analyzer

then you will add pwr2, and it would be the same for the temperature sensor

you would add temp2. Ex:ccs.ptd = pwr1, pwr2…Pwrn,temp1

4. Notice the detail section that is located in the CCS.props file. In this section will

be the field of the device that you added to the CCS.ptd variable. Uncomment

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 18 of 34 Copyright © 2007 - 2012 SPEC

the CCS.ptd.device.type, and CCS.ptd.device.port this informs the CCS

how to communicate with the additional device. Save CCS.props and exit.

5. For each device the user must have a runscript. EX: if a setup requires three

power analyzers. The user must have three runpower scipts , and each must be

modified to correspond to the correct NETWORK_PORT and other related

variables. So that each script can communicate with that particular device, and

each port must be unique.

6. To view a list of accepted devices the user must change to the ptd directory and

locate the ptd-windows-x86.exe. This is os specific so if you are using a linux

based system the script the user would need to execute ptd-linux-x86.sh.

Execute this script in a command window to view the corresponding values

associated with each accepted device.

7. Execute the runpower scripts so that you make sure your connections are

correct. If they are correct then you will receive a message from both scripts

stating “Waiting for connections”. If not, then check the runpower script for

any conflicts dealing with the network or device ports.

8. Now run the runtemp scripts so that you make sure your connections are

correct. If they are correct then you will receive a message from both scripts

stating “Waiting for connections”. If not, then check the runtemp script for

any conflicts dealing with the network or device ports

9. In order for the controller to communicate with SUTs , all network connections

must be on the same subnet.

10. Navigate to the SSJ directory and open the rundirector script. Ensure the

value of set NUM_HOSTS property equals the number of JVMs that will

simultaneously connect to that controller across all SUTs. This will allow the

director to know the total number of JVMs that will connect, and allow the

Director to wait until all connections are established before starting the

benchmark.

11. Please refer to Running the JVM Director Remotely

12. Execute the rundirector script and wait until for a message stating that the

director is ready for CCS connections. If not, something must not be

synchronized, please refer back to check all steps were concluded.

13. Locate the CCS directory. Execute runCCS to commence the benchmark.

SUT 1

SUT 2

Controller
IP Address =250.130.15.2

runssj.(bat/sh)
set DIRECTOR_HOST=250.130.15.2

rundirector.(bat/sh)
NUM_HOSTS=2

runpower.(bat/sh)
NETWORK_PORT= 8809

DEVICE = 8

runssj.(bat/sh)
set DIRECTOR_HOST=250.130.15.2

runtemp.(bat/sh)
NETWORK_PORT= 8808

DEVICE = 1001

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 19 of 34 Copyright © 2007 - 2012 SPEC

 Figure 3 – Multi-Node Configuration

Inventory of Operating System Services

After the SPECpower_ssj2008 run is complete, the user is required to take an inventory

of any services that were running during the benchmark run. After submitting results to

SPEC, the user must retain this record for the duration of the review period as SPEC may

request this information for results review purposes. Some suggestions for obtaining this

information are:

 For Windows: net start

 For Red Hat Linux: /sbin/runlevel; /sbin/chkconfig --list

Results

When the benchmark iteration is finished, CCS calls the Reporter. The Reporter is

another Java program whose function is to extract all of the benchmark data from the

.raw file that CCS created. The Reporter formats this data into several human-readable

HTML files. It will also use the power and performance data to create graphs for each

JVM instance that was run, as well as for the overall SPECpower_ssj2008 run in general.

These graphs will be embedded into the HTML files. After the Reporter has finished

creating the output files, all benchmark modules will terminate, and the user may then

view the results of the benchmark. See section 6 for a detailed discussion of the

SPECpower_ssj2008 Results Reports.

The results in a multi-node configuration are stored differently than the configuration

with one controller and only one SUT. Change to the results directory and locate the last

run in the folder. This simply means this is the last run.

In this configuration, the run number and the machine name conveniently separates the

output for each SUT, but the overall devices are precisely described in the original HTML

output produced for the overall. So please make sure you update the configuration files

on the SUT and the controller systems.

4 Operational Validity

In order to create compliant results, a run must pass several runtime validity checks.

These checks are described in the SPECpower_ssj2008 Run and Reporting Rules.

5 Metric

5.1 SPECpower_ssj2008 Metric

The performance to power ratio of the target loads is a measurement of the number of

ssj_ops (throughput) processed per watt of power consumed. The more ssj_ops the SUT

can produce with one watt of power, the better the efficiency of the SUT.

The SPECpower_ssj2008 metric is calculated as the sum of all ssj_ops scores for all

target loads, divided by the sum of all power consumption averages (in watts) for all

target loads, including the active idle measurement interval.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 20 of 34 Copyright © 2007 - 2012 SPEC

The unit of the SPECpower_ssj2008 metric is “overall ssj_ops / watt”.

6 Results Reports

6.1 Overview

One of the major functions of CCS is to collect the benchmark data in real time, and

output this data into reports that can be retrieved and viewed by the user. When a

benchmark run is complete, there are a number of results files that CCS will have created

for the user:

 a CSV file

 a RAW file

 several HTML files

Where these results files are stored can be specified by the user with the ccs.results

property in the ccs.props file. (This property is not included in ccs.props by default,

and must therefore be entered manually in the format ccs.results=<desired results

path>.) By default, the results will be stored in …/SPECpower_ssj2008/Results. The user

is expected to ensure that the JVM instance for CCS will have the necessary credentials

to write to this path.

For each benchmark run, CCS will create a new directory under the Results directory into

which it will store all of the results of the benchmark run. The name of the directory

takes the form ssj.<run number>. For example, the first directory that CCS will create

will be ssj.0001; the next directory (for the next run) will be ssj.0002, and so on.

This section will briefly explain the methodology employed by CCS for creating the results

files. Details about each different type of results file will be discussed one at a time in the

sections following this one.

When CCS is first initiated, one of the first things that it does is create two files: a CSV

file and a RAW file. Throughout the entire benchmark iteration, CCS will collect data from

the data sources to which it is connected, and store this data into these files in real time.

The major difference between these two files is that the CSV file contains a sample-by-

sample collection of measurement data, whereas the RAW file is used to store a more

summarized version of the measurement samples, along with more details about each

summary, and about the workload iteration.

Upon successful completion of the benchmark run, CCS will stop writing to the CSV and

RAW files, and will then use the information contained in the RAW file to generate several

human-readable HTML files. While all of the results files contain very valuable data about

the benchmark run, many users will likely only be interested in the HTML files which are

covered in detail in section 6.5.

6.2 The CSV file

The CSV (comma separated values) file is written in plain-text, Unicode format, and can

be viewed with most popular text editors. The CSV file contains an extremely detailed

collection of power consumption , temperature and performance data for the benchmark

run at the highest possible level of resolution for each sample.

CSV File Naming Convention
The filename of the CSV results file takes the form of the directory name under which it

resides, followed by .ccs-log.csv. For example, if the CSV file was created by CCS

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 21 of 34 Copyright © 2007 - 2012 SPEC

under the directory …/SPECpower_ssj2008/Results/ssj.0008, then the CSV filename

would be ssj.0008.ccs-log.csv.

CSV File Format
The CSV file is divided into two main sections:

 a Test Bed Information Section

 a Measurement Section.

6.2.1.1 Test Bed Information Section

The Test Bed Information Section contains configuration information about CCS as well

as detailed information about each data source that CCS is configured to connect to and

collect data from.

#----- CCS properties -----

#Wed Nov 28 11:40:49 CST 2007

ptd.temp1.config.sensor.connectivity=USB

ptd.temp1.config.sensor.model= NS Thermal X
ptd.pwr1.config.ptd.os=Controller System

ccs.config.hw.cpu=Saturn ULP

… … …

… … …

#----- CCS System info -----

version=0.21

ccs.awt.toolkit=sun.awt.windows.WToolkit

ccs.file.encoding=Cp1252

ccs.file.encoding.pkg=sun.io

… … …

… … …

[wkld.MyWorkload] settings:

global.input.load_level.pre_measurement_seconds=30

global.input.log_level=INFO

global.os.name=Windows 2003

global.sun.io.unicode.encoding=UnicodeLittle

… … …

… … …

[ptd.MyPower] Model: Eureka Power Cyclone

[ptd.MyPower] Averaging interval(ms): 1000

[ptd.MyPower] . version=0.21-2f7044de

[ptd.MyTemp] Model: Acura NS Thermal X

[ptd.MyTemp] Averaging interval(ms): 5000

[ptd.MyTemp] . version=0.21-2f7044de

ptd.MyPower.ptd.version=0.21-2f7044de

ptd.MyPower.ptd.certified=True

ptd.MyTemp.ptd.version=0.21-2f7044de

ptd.MyTemp.ptd.certified=True

If CCS is configured to connect to more data sources, then information about those

sources will be included here as well.

6.2.1.2 Measurement Section

After CCS records the test bed information into the CSV file, it then begins recording the

measurement data that it retrieves from its data sources. The Measurement Section is

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 22 of 34 Copyright © 2007 - 2012 SPEC

arranged into a column-row format. How many columns actually get recorded to the CSV

file will depend on the number of data sources that CCS has been configured to connect

with. The column headings (for a minimal configuration) are:

 CCS-Ser: This column contains the serial number of the measurement sample,

starting with 1, and on until the completion of the benchmark iteration.

 Action: This is the action requested by CCS from the workload and from the PTD

instance(s). For each measurement sample, CCS will issue a “REQ_TX_DATA”

request to its data sources; to which the data sources will respond with their most

current measurement data. When the workload “state” changes (for example from

target load 3 ramp-down to target load 4 ramp-up), CCS will post a

“REQ_TX_SUMMARY” request to which the data sources will respond with a

"summary" of their data for the workload interval. These actions determine the

data that is returned and logged.

 Run-ID: This string allows use of a unique identifier for the benchmark iteration.

It must be defined by the user with the ccs.runId property in the ccs.props file.

It does not otherwise change.

 wkld.MyWorkload.Trans: The accumulated number of transactions that have

been processed during the workload interval.

 wkld.MyWorkload.BatchCount: A Batch is a set of high level transactions that are

executed during the workload iteration. It is the execution of these transactions

that serve as the actual workload for the SUT.

 pwr.MyPA.Watts: The power reading, in watts, retrieved from Power &

Temperature Daemon.

 pwr.MyPA.Amp: The current reading, in amperes, retrieved from Power &

Temperature Daemon.

 pwr.MyPA.Volt: The voltage reading, in volts, retrieved from Power &

Temperature Daemon.

 pwr.MyPA.PF: The power factor reading retrieved from Power & Temperature

Daemon.

 temp.MyTemp.Temperature: The temperature reading as it is retrieved from

Power & Temperature Daemon.

 temp.MyTemp.Humidity: The humidity reading as it is retrieved from Power &

Temperature Daemon.

As more data sources are configured, more columns for those data sources will be

included in the Measurement Section.

6.3 The RAW File

The RAW file is written in plain-text, Unicode format, and can be viewed with most

popular text editors. In this regard, the RAW file only records the power, temperature

and performance summaries. A summary is the average of all of the data samples that

where captured during an interval. For example: if there were 240 samples of data

captured during an interval, only the average of those 240 samples would be recorded

into the RAW file. Also contained in the RAW file is a highly detailed collection of data

about the workload iteration itself and about the actual hardware, software and

benchmark configuration of the SUT(s).

The primary function of the RAW file is to serve as a source of data that can be parsed by

the SPECpower_ssj2008 reporter. The reporter will be discussed in detail in section 6.4.

Raw File Format
The RAW file is ordered into 4 major sections.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 23 of 34 Copyright © 2007 - 2012 SPEC

 a test bed information section - is identical to the test bed information section of

the CSV file

 a measurement section - the RAW file contains all of the same data types as those

that are contained in the measurement section of the CSV file, along with many

additional data types.

 a workload information section - contains very detailed statistics about each JVM

instance (as well as the JVM Director) that was run within the workload.

 a global SUT information section - after the workload information section, the

global SUT information section is recorded into the RAW file

 identification and contact information of the company that performed the

benchmark run

 benchmark configuration information

 performance tuning information

 hardware information

 etc.

6.3.1.1 The Measurement Section

The data are organized in a line by line format, as opposed to a column-row format. Each

line is of the format field=value. Every field is prefixed with the identifier

ssj2008.ccs.result.<serial number>. The serial number is the consecutive number of the

data sample for the RAW file, and is not to be mistaken for the serial numbers in the CSV

file. Below is a (condensed) measurement sample from a RAW file:

ccs.result.28.CCS-ser=### [wkld.MyWorkload]

ccs.result.28.CCS_TIME=2007-06-19 10:19:32.484

ccs.result.28.ACTION=REQ_TX_SUMMARY

ccs.result.28.RUN_ID=MyRun

ccs.result.28.wkld.MyWorkload.CCS_RT=0

ccs.result.28.wkld.MyWorkload.WK_STATE=_04_lvl_sum_

ccs.result.28.wkld.MyWorkload.TRANS=-

ccs.result.28.wkld.MyWorkload.WHSE=-

ccs.result.28.wkld.MyWorkload.BATCH_RT=659179

ccs.result.28.wkld.MyWorkload.BATCH_COUNT=4107

ccs.result.28.wkld.MyWorkload.AVG_TXN=17113.033333333333

ccs.result.28.pwr.MyPA.CCS_RT=0

ccs.result.28.pwr.MyPA.WATT=310.059167

ccs.result.28.pwr.MyPA.AMP=2.663268

ccs.result.28.pwr.MyPA.VOLT=119.738708

ccs.result.28.pwr.MyPA.PF=0.979123

ccs.result.28.pwr.MyPA.NOTES="Watts,310.059167,223.700000,365.200000,

240,0,240,Volts,119.738708,119.170000,120.050000,240,0,240,Amps,2.663

268,1.934400,3.078000,240,0,240,PF,0.979123,0.948200,0.992000,240,0,2

40"

ccs.result.28.temp.MyTemp.TEMP=-1.0

ccs.result.28.temp.MyTemp.HUMID=-1.0

ccs.result.28.temp.MyTemp.NOTES="Temperature,-1.0,0,0,0,0,Humidity,-

1.0,0,0,0,0"

In this excerpt, the sample happens to be the 28th sample that is recorded into the RAW

file.

6.3.1.2 The Global SUT Information Section

Each of these entries are prefixed with the identifier ssj2008.wkld.ssj.global. Below

are some example entries:

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 24 of 34 Copyright © 2007 - 2012 SPEC

ssj2008.wkld.ssj.global.user.country=US

ssj2008.wkld.ssj.global.user.dir=C:\SPECpower_ssj2008\ssj

ssj2008.wkld.ssj.global.user.home=C:\Documents and

Settings\Administrator

ssj2008.wkld.ssj.global.user.language=en

ssj2008.wkld.ssj.global.user.name=Administrator

etc...

6.4 The Reporter

Upon completion of the benchmark run, CCS will call the SPECpower_ssj2008 reporter,

another java program whose function is to extract all of the benchmark data from the

RAW file that CCS createdThe reporter will format this data into a human-readable HTML

file(s).

It will also graph the power and performance data in the RAW file that illustrates the

throughput data for each JVM instance that was run. This graph illustrates the overall

performance and power data (the final SPECpower_ssj2008 score) for the entire

benchmark implementation across all SUTs. The graphs will be embedded into the HTML

file(s) by the reporter.

By default, the reporter will be run automatically by CCS as soon as the benchmark run

is complete, creating the HTML file(s). However the reporter can be run manually, and

doing so affords the opportunity for the user to take advantage of many command-line

arguments and parameters that are supported by the reporter.

Running the Reporter Manually
Like the other modules of the SPECpower_ssj2008 suite, the kit also comes with a run

script that can be used to run the reporter. While the reporter can certainly be invoked

by calling it manually with the java interpreter, the recommended (and easiest) way to

run the reporter is to use the run script included in the kit. The default name of the run

script is reporter.bat for Windows, and reporter.sh for Unix.

The reporter run script is located in the ssj directory and is the only run script in the kit

that requires command line arguments in order to function. The syntax for running the

script is quite standard:

reporter.bat [options]

or
./reporter.sh [options]

as appropriate to the operating system.By initilizing the reporter script it will dynamically

display all the options afforded to the reporter. Additionally, the reporter can be used to

compare the results of two benchmark runs. Below is an example command for

comparing two RAW files:

./reporter.sh -e -r ../Results/ssj.0001/ssj.0001.raw –c

../Results/ssj.0002/ssj.0002.raw -o ../Results/compare.html

Results submitted to SPEC will appear on the SPEC website in the ASCII and HTML

formats.

6.5 The HTML File(s)

Upon completion of the benchmark run, the reporter will generate an HTML results file

with embedded graphs.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 25 of 34 Copyright © 2007 - 2012 SPEC

HTML File Naming Convention

There are 3 different types of HTML files that will be created by the reporter:

The filename of the overall HTML results file takes the form of the directory name under

which it resides. For example, if the overall HTML file was created by CCS under the

directory …/SPECpower_ssj2008/Results/ssj.0008, then the HTML filename would be

ssj.0008.html.

Finally, the detailed HTML results files for each JVM instance takes the form of the

directory under which it is stored, with .details-<SUT_number>.<JVM_number>.html

appended to it. For example, ssj.0008.details-0001.0003.html.

Each type of HTML file is very easy to read, and therefore very self-explanatory. For this,

only the overall HTML results file will be discussed in the section.

Overall HTML Results File Format

Unlike the other results files, the HTML files are designed to be highly “user-friendly” and

very easy to read. Assuming the user has read and grasped most of the core concepts

about the SPECpower_ssj2008 the user should have little to no difficulty reading and

understanding the HTML results file, as it is extremely self-explanatory. For this reason,

the HTML results file will only be discussed briefly.

The HTML file is made up seven major sections, with each section containing numerous

subsets of data about the benchmark run.

The Header Section - It simply contains the most basic identification information

about the benchmark the company running the benchmark, the platform that was

tested, along with the SPECpower_ssj2008 score.

,

 Performance Results Summary - summarizes the power and performance data

throughout the benchmark run, in addition displays performance to power ratios

in easy-to-read table and graphical formats.

 System Under Test - configuration information about the SUT(s) including

hardware, software, OS information, Java Runtime Environment and etc.

 Control and Collect System - information about the controller server‟s hardware

and software, CCS, Java Runtime Environment information power analyzers and

temperature sensors also.

 Tuning/Notes - discloses any performance tuning that was done within the test

bed, along with any other miscellaneous notes that may be pertinent to the

benchmark run.

 Electrical and Environmental Data - contains more details about the electrical data

than what was disclosed in the Performance Results Summary section and

environmental temperature data.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 26 of 34 Copyright © 2007 - 2012 SPEC

 JVM Instance Performance Section - contains the throughput performance data for

each JVM instance that was run. The data is organized neatly into a table, and is

also represented graphically within a benchmark iteration, the more entries there

will be in this section

6.6 The SSJ Results Files

The user should be made aware that the SSJ module of the benchmark also generates its

own results files.

 The main purpose of the SSJ results files are for observing workload-specific

information, as well as workload-specific debugging information. These results files can

be found (by default) under the …/SPECpower_ssj2008/ssj/results directory of

whichever system is hosting the JVM director.

The RAW Files
The RAW files for the SSJ module contain detailed information about the workload itself,

and are used to generate the HTML results files for the SSJ module.

6.6.1.1 RAW File Naming Convention (Workload)

There are 3 types of RAW files that will be generated by the SSJ module:

The RAW file for the JVM Director takes the form <directory_name>.director.raw;

where directory_name is the name of the directory in which the raw files are stored. For

example: ssj.0008.director.raw.

The detailed RAW file for all JVM instances takes the form

<directory_name_.details.raw. For example: ssj.0008.details.raw.

A detailed RAW file will also be created for each JVM instance. It takes the form

<directory_name>.<SUT_number>.<JVM_number>.raw. For example:

ssj.0008.0001.0003.raw.

The LOG File
The LOG file is a plain-text file and doesn‟t require much explanation at all. To put it

briefly, it is a plain-text log to which the workload engine writes every time the workload

performs any kind of action. Most users will probably only find it useful for occasional

debugging purposes, as it contains time stamps for each time the workload performs a

new action such as entering a new measurement interval. A log file is generated for each

JVM instance.

6.6.1.2 LOG File Naming Convention

The LOG file takes the form <directory_name>.<SUT_number>.<JVM_number>.log. For

example: ssj.0008.0001.0003.log.

The RESULTS File
There is one RESULTS file for each JVM instance as well as for the JVM Director. The

RESULTS file is simply a recording of the STDOUT output of the JVM instance. In other

words, all of the text that the workload engine displays to the console of the SUT(s)

during the workload iteration is also copied into this file.

6.6.1.3 RESULTS File Naming Convention

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 27 of 34 Copyright © 2007 - 2012 SPEC

The RESULTS file for the JVM Director takes the form

<directory_name>.director.results. For example: ssj.0008.director.results.

The RESULTS file for each JVM instance takes the form

<directory_name>.<SUT_number>.<JVM_number>.results. For example:

ssj.0008.0001.0003.results.

The TXT File

The TXT file is simply an alternative format that is generated by the reporter, one for all

JVM instances, and then one for each JVM instance. Each TXT file contains detailed

information about the JVM instance.

6.6.1.4 TXT File Naming Convention

The TXT file for all JVM instances takes the form <directory_name>.details.txt. For

example: ssj.0008.details.txt.

The TXT file for each JVM instance takes the form <directory_name>.details-

<SUT_number>.<JVM_number>.txt. For example: ssj.0008.0001.0003.txt.

7 Visual Activity Monitor (VAM)
The Visual Activity Monitor (VAM) is an optional and flexible Java-based software tool designed to
render a real-time graphical representation based on data collected during the SPECpower_ssj2008
benchmark execution. It is capable of retrieving performance data from up to three (3) SUTs, as it is
captured by the CCS. The VAM can run in virtually any operating environment using configuration and
communication methods similar to those employed by other SPECpower benchmark software
components. The VAM generates a compelling visual representation of any performance impact
produced by the introduction of new server technologies. Communication occurs between predefined
TCP/IP ports associated with one or more instance of CCS. The VAM display (Figure 7.2) is organized
into „panels,‟ each corresponding to a set of entries located within the control file „vam.props.‟ Panels
can be omitted by removing or simply commenting the associated entries within the „vam.props‟ file.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 28 of 34 Copyright © 2007 - 2012 SPEC

Figure 7.2 – Sample VAM Display Window with Legend

Installing VAM

No additional installation is required. VAM is distributed and installed along with all the other
components of SPECpower_ssj2008 1.12. The VAM code, batch file (runvam.bat) and property file
(vam.props) are located in the VAM subdirectory of SPECpower_ssj2008. Ensure that the runvam.bat
is updated with the path to Java in order to work correctly.

set JAVA=c:\yourjava\bin\java

set SSJ_HOME="..\ssj"

:: the line below establishes the path to the required libraries

set CP%SSJ_HOME%\lib\jfreechart-1.0.6.jar;%SSJ_HOME%\lib\jcommon-1.0.10.jar

%JAVA% -classpath %CP% vam.VAMApp vam_x.0.0.props

Verify or Establish Required Communication

Verify that the benchmark is behaving as expected. Check for network accessibility between servers. If
necessary, use ping to verify connectivity. All servers must exist on a common private subnet. In
addition, all TCP port assignments associated with the requisite software and hardware components
should be properly coordinated before proceeding. If problems are encountered, review all preceding
sections that may apply.

VAM Setup

Preparing VAM for use requires changes to the properties file „vam.props‟ to include the desired
panels. A unique user-defined name has to be assigned to each SUT. In addition, each CCS instance
(i.e. - ccs.ptd.pwr1) that is expected to provide data to VAM, must include entries in the „ccs.props‟ file

Title Panel

Text

Panel

Panel -1

Panel -

2

Panel -

3

Legen

d

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 29 of 34 Copyright © 2007 - 2012 SPEC

to “turn on” the TCP port through which the corresponding CCS instance will communicate with VAM.
The appropriate declaration (i.e. - ccs.vam =vam1) within the „vam.props‟ file needs to be included.

When benchmarking multiple sources, each JVM instance is controlled and coordinated by the
ssj_2008 Director. The Director consolidates the performance data from multiple JVM instances and
passes an aggregate ssj_ops per second to the CCS which is also gathering data from multiple power
analyzers. If configured for multiple sources, all data provided by CCS and presented by the VAM
display window represent the aggregate of each value. Set the „syncstart‟ property to “true” in the
vam.props and ccs.props files in order to synchronize the data flow between VAM, CSS and SUTs.

The following example represents the maximum number of data sources and describes changes
required to introduce VAM to a functioning benchmark

vam.props

vam.datasource = sut1, sut2, sut3 (assigns user-defined device names)

sut1.name = SuperSUT1 (name reflected on chart)

sut1.color = red (representative color for ‘sut1’)

sut1.port = 8908 (uniquely assigned TCP port)

sut2.name = SuperSUT2

sut2.color = blue

sut2.port = 8909

sut3.name = SuperSUT3

sut3.color = darkgray

sut3.port = 8910

vam.syncStart = true

css.props

ccs.vam = vam1, vam2, vam3 (declares data sources ‘vam1’, ‘vam2’, ‘vam3)

ccs.vam.vam1.type = VAM (identifies data source as VAM)

ccs.vam.vam1.IP = localhost (location of VAM instance)

ccs.vam.vam1.Port = 8908 (unique TCP/IP Port for VAM instance)

ccs.vam.vam2.type = VAM

ccs.vam.vam2.IP = localhost

ccs.vam.vam2.Port = 8909

ccs.vam.vam3.type = VAM

ccs.vam.vam3.IP = localhost

ccs.vam.vam3.Port = 8910

ccs.vam.syncstart = true (synchronizes VAM, CCS and SSJ instances)

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 30 of 34 Copyright © 2007 - 2012 SPEC

Figure 7.3 – Describes TCP port coordination with multiple SUTs

VAM Presentation Properties

An experienced user may choose to tailor the display with a particular audience in mind.
Therefore many properties are available within the „vam.props‟ file that can be used to
customize the appearance of the VAM display window.

Global Settings
The VAM display window refresh rate is expressed in seconds.

vam.refreshRate = 1

Adjust the number of data points represented on the X axis in coordination with the
smoothing feature for optimum data presentation. Default smoothCount value is 1.

vam.chartDataPoints = 60

vam.smoothCount = 2

Screen Size and Location
VAM window starting position and size
X = horizontal window start position, e.g. 100 pixels from left side of display
Y = vertical window start position, e.g. 120 pixels from top of display
Width and Height represent frame dimensions

vam.frameTopX = 100

vam.frameTopY = 120

vam.frameWidth = 800

vam.frameHeight = 900

Title Panel and Text

This property set defines the appearance of the Title Panel located across the top of the VAM

display window.

title.panel.show configures VAM to display the title panel.
vam.titlePanel.show = yes

titlePanel.title is used to title the VAM display window.
vam.titlePanel.title = SPECpower Visual Activity Monitor

runpower3.bat

NETWORK_PORT = 8810

runpower2.bat

NETWORK_PORT = 8809

runpower1.bat
NETWORK_PORT = 8808

vam.props (SUT3)

sut3.port = 8910

vam.props (SUT2)

sut2.port = 8909

vam.props (SUT1)

sut1.port = 8908

css.props

ccs.ptd.pwr3.Port = 8810

ccs.vam.vam3.Port = 8910

css.props

ccs.ptd.pwr2.Port = 8809

ccs.vam.vam2.Port = 8909

css.props

ccs.ptd.pwr1.Port = 8808

ccs.vam.vam1.Port = 8908

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 31 of 34 Copyright © 2007 - 2012 SPEC

titlePanel.fontcolor is used set the Title‟s text color.
vam.titlePanel.fontColor = blue

titlePanel.fontcolor is used set the Title‟s text font size.
vam.titlePanel.fontSize = 20

"size.xMin" determines fixed title box width.
vam.titlePanel.size.xMin = 100

"size.yMin" determines fixed title box height.
vam.titlePanel.size.yMin = 30

Chart Panel Example

Setup for the watts chart
vam.wattPanel.show configures VAM to display the Power-Watts panel.

vam.wattPanel.show = yes

vam.wattPanel.title provides the panel title.
vam.wattPanel.title = power – watts

vam.wattPanel.x-axis labels the x-axis
vam.wattPanel.x-axis.title = seconds

vam.wattPanel.y-axis labels the y-axis
vam.wattPanel.y-axis.title = avg watts

vam.wattPanel.legend displays the legend for each panel of set to “yes.”
vam.wattPanel.legend = no

y range will default to auto when value is blank
vam.wattPanel.y-Value.min = 0

vam.wattPanel.y-Value.max = 50

Adjusting Panel Size

Default size is 100, 50 if values are blank

vam.wattPanel.size.xMin = 100

vam.wattPanel.size.yMin = 100

Freeze Button Example
The “freeze button” will stop the data display, essentially freezing the lines on the charts.
This capability is useful for demos to explain some specific behavior. Toggle between
“Freeze/Resume” to utilize this feature. Data points produced during the freeze period cannot be
displayed.

Display the "Freeze" button by setting buttonPanel.show to “yes.”

vam.buttonPanel.show = yes

vam.buttonPanel.size.xMin = 100

vam.buttonPanel.size.yMin = 30

Colors
The list below shows the only valid entries where „color‟ can be changed.
Valid Colors List:
Black, Blue, Cyan, Darkgray, Gray, Green, Lightgray, Magenta, Orange, Pink, Red, White, Yellow

Starting VAM

Proceed as if starting SPECpower_ssj2008 in accordance with preceding instruction. After the director
has acknowledged each of the workloads (SUTs) and PTD devices execute the CSS (runccs.bat)
script and start VAM via the runvam.bat script. VAM will begin presenting the incoming data
immediately. If the „syncstart‟ property is “true,” VAM and CSS will each wait for the other before data
is presented to the VAM display window.

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 32 of 34 Copyright © 2007 - 2012 SPEC

Caveats

With release 1.0, VAM cannot be stopped and then re-started with the same instantiation of CCS,
VAM will not “re-connect”.

A given instance of CCS can only provide data to one instance of VAM representing a maximum of
three (3) SUTs.

Figure 7.6 – Shows benchmark with VAM included

Quickly Customizing Display

To quickly customize the display, VAM can run without any instances of CCS.
Essentially, you will iterate through the following sequence of actions until you are satisfied.

1. open the VAM properties file for editing

2. make the necessary changes and “save the file”

3. run VAM, see changes required.

4. exit VAM

5. edit the already open VAM properties

6. Repeat (go to step 2)

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 33 of 34 Copyright © 2007 - 2012 SPEC

Figure 7.5 – Customized Display

8 Performance Tuning

All of the techniques and concepts that are involved in this area reach indefinitely beyond

the scope of this document. Therefore, only a few elementary concepts that are related

to the SPECpower_ssj2008 benchmark will be briefly discussed in this section. This

document is not to be considered, and does not claim to be, a complete reference for

SPECpower_ssj2008 performance tuning.

Please note that these techniques may or may not necessarily be beneficial for system

performance in a production environment.

 JVM Software: This is a critical component affecting the performance of the

system for the workload. These options can be found in the runssj file, locate the

corresponding variable JAVAOPTIONS_SSJ. Here the user must figure out what

parameters best fits their configuration. Good starting points are the published

results on http://www.spec.org/power_ssj2008/results/power_ssj2008.html. For

more information concerning these options please consult your JVM vendor.

 CLASSPATH: Having extra items in CLASSPATH can degrade performance on

some JVMs.

 Memory: The SPECpower_ssj2008 workload uses at least a heap size of 256 and

is known to benefit from additional memory. Heap size is set via the -ms/-mx (or

-Xms/-Xmx) command line arguments for the java executable in many JVMs.

 Threads: The number of threads is approximately equal to the number of

warehouses. For very large numbers of warehouses, you may need to increase

operating system limits on threads.

http://www.spec.org/power_ssj2008/results/power_ssj2008.html

SPECpower_ssj2008 User Guide

date: 05/30/2012 page 34 of 34 Copyright © 2007 - 2012 SPEC

 JVM Locking: At a larger number of warehouses (and hence threads), the

synchronization of application methods, or the JVM's internal use of locking, may

prevent the JVM from using all available CPU cycles. If there is a bottleneck

without consuming 100% of the CPU, lock profiling with JVM or operating system

tools may be helpful.

 Network: Although SPECpower_ssj2008 uses very little network I/O, it is a good

idea to make sure that the network fabric being used for the test bed has a very

high availability for use by SPECpower_ssj2008. The best practice is to setup the

test bed on its own isolated broadcast domain. This will minimize the possibility

for network anomalies that may interfere with SPECpower_ssj2008‟s network-

specific components.

 Disk I/O: SPECpower_ssj2008 does not write to disk as part of the measured

workload. Classes are read from disk, of course, but that should be a negligible

part of the workload. If the disk I/O is found to be higher than it should be, then

there may be another process accessing the disk during the benchmark run. While

this may or may not be affecting performance, the excessive disk I/O may be

contributing to higher power consumption, which will ultimately lower the SUT's

final score.

Unlike most benchmark implementations, in SPECpower_ssj2008, tuning for performance

is not always the most important consideration for the user. The user should also be

mindful of the SUT's power consumption characteristics. Remember, a higher power

consumption will lower the SPECpower_ssj2008 score.

As with most aspects of the benchmark implementation, there are restrictions concerning

what kind and how much performance and power-consumption tuning is allowed for

publishable results. Please see the SPECpower_ssj2008 Run and Reporting Rules for

details.

9 Submitting Results
Upon completion of a compliant run, the results may be submitted to SPEC. Please see

the SPECpower_ssj2008 Run and Reporting Rules for details.

10 Disclaimer
Product and service names mentioned herein may be the trademarks of their respective owners.

