
SPECstorage® Solution 2020 Userôs Guide Version 1.2

1

SPECstorageÊ

Solution 2020 Userõs

Guide

Standard Performance Evaluation Corporation (SPEC)

7001 Heritage Village Plaza
Suite 225
Gainesville, VA 20155

Phone: 1-703-579-8460
Fax: 1-703-579-8463

E-Mail: info@spec.org

Copyright (c) 2020 by Standard Performance Evaluation Corporation (SPEC)
All rights reserved

SPEC and SPECstorage are registered trademarks of the Standard Performance Evaluation Corporation

mailto:info@spec.org

SPECstorage® Solution 2020 Userôs Guide Version 1.2

2

Table of Contents

OVERVIEW OF BENCHMARK ...4

1 QUICK START GUIDE ...4

1.1 RUNNING THE BENCHMARK FOR THE FIRST TIME ... 4
1.2 EXAMPLE: OFFICIAL BENCHMARK RUN ς SWBUILD ... 5
1.3 PREREQUISITES ... 6
1.4 INSTALLING THE SPECSTORAGE SOLUTION 2020 BENCHMARK ... 6

1.4.1 Platform common installation and configuration ... 6
1.4.2 UNIX client installation and configuration: .. 6
1.4.3 Windows client installation and configuration: ... 7

1.5 EDITING THE CONFIGURATION FILE ON THE PRIME CLIENT .. 7
1.6 CONFIGURING THE STORAGE SOLUTION FOR TESTING.. 8
1.7 STARTING THE BENCHMARK .. 9
1.8 MONITORING THE BENCHMARK EXECUTION .. 9
1.9 EXAMINING THE RESULTS AFTER THE BENCHMARK EXECUTION HAS COMPLETED ... 9
1.10 WHERE DO YOU GO FROM HERE? .. 9

2 SPECSTORAGE SOLUTION 2020 BENCHMARK..9

2.1 SIMULATION OF WORKLOADS ... 10
2.2 SPECSTORAGE SOLUTION 2020 WORKLOADS AND BUSINESS METRICS ... 11
2.3 RESOURCE REQUIREMENTS ... 11
2.4 SCALE .. 11
2.5 SM2020 ς THE BENCHMARK MANAGER ... 11

2.5.1 The Summary Files ... 15

3 INSTALLING AND CONFIGURING THE BENCHMARK ENVIRONMENT.. 15

3.1 SETTING UP THE SOLUTION UNDER TEST (SUT)... 15
3.2 SETTING UP THE LOAD GENERATORS .. 16

3.2.1 Configuring SPECstorage Solution 2020 Windows Clients for Auto-Startup ... 17
3.3 CONFIGURING REQUIRED BENCHMARK PARAMETERS ... 18

3.3.1 Configuring Other Parameters in the RC File ... 19
3.4 DETAILED CLIENT LOG FILES.. 20

4 RUNNING THE BENCHMARK AND INTERPRETING RESULTS ... 21

4.1 SPECSTORAGE SOLUTION 2020 BENCHMARK DIRECTORY STRUCTURE .. 21
4.2 PRE-COMPILED SPECSTORAGE SOLUTION 2020 BENCHMARK BINARIES .. 21
4.3 BUILDING THE SPECSTORAGE SOLUTION 2020 BENCHMARK ... 22
4.4 USING SM2020 ... 22

4.4.1 Example of SUT Validation .. 22
4.4.2 Example of a Benchmark Run ... 22

5 SUBMISSION AND REVIEW PROCESS ... 25

5.1 CREATING REPORTS ... 25
5.1.1 Creating the Submission Package ... 26

5.2 SUBMITTING RESULTS .. 27

6 WORKLOAD DEFINITIONS .. 27

6.1 SOFTWARE BUILD (SWBUILD) BENCHMARK.. 27
6.1.1 SWBUILD Workload Description ... 27

SPECstorage® Solution 2020 Userôs Guide Version 1.2

3

6.1.2 SWBUILD Workload Definition .. 28
6.2 VIDEO DATA ACQUISITION (VDA) BENCHMARK .. 28

6.2.1 VDA Workload Description .. 28
6.2.2 VDA1 Workload Definition (subcomponent) .. 29
6.2.3 VDA2 Workload Definition (subcomponent) .. 30

6.3 ELECTRONIC DESIGN AUTOMATION (EDA_BLENDED) BENCHMARK .. 30
6.3.1 EDA_BLENDED Workload Description .. 30
6.3.2 EDA_FRONTEND Workload Definition (subcomponent) ... 31
6.3.3 EDA_BACKEND Workload Definition (subcomponent) .. 32

6.4 AI_IMAGE (AI_IMAGE) BENCHMARK .. 32
6.4.1 AI_IMAGE Workload Description .. 32
6.4.2 AI_SF Workload Definition (subcomponent) .. 33
6.4.3 AI_TF Workload Definition (subcomponent).. 34
6.4.4 AI_TR Workload Definition (subcomponent) ... 35
6.4.5 AI_CP Workload Definition (subcomponent) ... 36

6.5 GENOMICS (GENOMICS) BENCHMARK .. 36
6.5.1 Genomics Workload Description... 36
6.5.2 GENOMICS Workload Definition ... 37

7 FAQ ... 38

7.1 SPECSTORAGE SOLUTION 2020 BENCHMARK PRESS RELEASE .. 38
7.2 TUNING THE SOLUTION .. 42
7.3 SUBMISSION OF RESULTS.. 42

8 TRADEMARKS.. 42

9 RESEARCH CORNER .. 43

9.1 CUSTOM CHANGES TO STORAGE2020.YML FILE TO ADD NEW WORKLOADS. .. 43
9.2 CUSTOM WORKLOAD OBJECTS ... 43
9.3 STATISTICS COLLECTION VIA PDSM ... 43

9.3.1 Configuring PDSM .. 43
9.3.2 Configuring Carbon .. 44

9.3.2.2 PREREQUISITE ... 44

9.3.3 Visualizing the data ... 46

10 APPENDIX A ς BUILDING THE BENCHMARK COMPONENTS .. 51

10.1 BUILDING THE SPECSTORAGE SOLUTION 2020 BENCHMARK FOR UNIX... 51
10.1.1 How to build SPECstorage2020 on Unix. i.e. Linux, FreeBSD, MacOS, Solaris 51

10.2 BUILDING THE SPECSTORAGE SOLUTION 2020 BENCHMARK FOR WINDOWS.. 51
10.2.1 Build the individual project files .. 52

11 APPENDIX B ς SETTING UP PASSWORD-LESS SSH ... 53

11.1 SETTING UP OPENSSH ON WINDOWS ... 53

12 APPENDIX C ς TUNES FOR THE LOAD GENERATORS .. 54

12.1 LINUX TUNES .. 54
12.1.1 Limiting RAM in the client ... 55

12.2 WINDOWS TUNES.. 55
12.2.1 Limiting RAM in the client. .. 55

SPECstorage® Solution 2020 Userôs Guide Version 1.2

4

Overview of Benchmark

The SPECstorage Solution 2020 benchmark is used to measure the maximum sustainable throughput that a storage
solution can deliver. The benchmark consists of multiple workloads which represent real data processing file system
environments. Each of these workloads are run independently to generate a benchmark publication. In a typical test
configuration, a group of load generating clients are directed through a network at file systems shared or exported
from a file server, or a cluster of servers. The benchmark is protocol independent. It will run over any version of
NFS or SMB, clustered file systems, object-oriented file systems, local file systems, or any other POSIX-compatible

file system. But typically, the benchmark is run using multiple load generators to measure network storage
performance. Because this tool runs at the application system call level, it is file system type agnostic and provides
strong portability across operating systems and storage solutions. The SPECstorage Solution 2020 benchmark
provides pre-compiled binaries for many popular operating systems including Linux, Windows 10, Windows Server
2012R2, Windows Server 2016, Windows Server 2019, Mac OS X, BSD, Solaris, and AIX, and can be used to test

any of the file system types that these systems offer that are POSIX compatible.

Many improvements have been made when compared to the previous version of this benchmark. It scales better in

distributing load generator work, has more efficient logging capabilities, and faster start-up, and shutdown times.

Because the benchmark runs at the application system call level, all components of the storage solution impact the
performance of the solution ï this includes the load generators themselves as well as any physical or virtual

hardware between the load generators and where the data ultimately rests on stable storage.

Example topology

1 Quick Start Guide

These quick start procedures use the pre-compiled C code binaries shipped with the benchmark and assume a

homogeneous network of all UNIX-compatible clients or all Windows clients.

1.1 Running the Benchmark for the First Time

We will describe how to set up a simple benchmark run similar to this example in the following sections. This quick

start section is intended to get the new user acquainted with the basic configuration of the benchmark.

The minimal configuration consists of:

¶ One management client, referred to as the Prime Client

¶ One load generating client

Storage Server (NFS, SMB, FC, iSCSI, GPFS, Lustre é)

Prime client
Windows or

UNIX

Non-Prime
client Windows

or UNIX

Non-Prime
client Windows

or UNIX

Non-Prime
client Windows

or UNIX

Interconnect/Network

SUT (Solution Under Test)

SPECstorage® Solution 2020 Userôs Guide Version 1.2

5

¶ One POSIX-compliant file system (for example a local file system, NFS, SMB, iSCSI, FCP, GPFS, or Lustre
server)

For UNIX-compatible systems the Prime Client may also be a load generator. For Windows-based environments, a

separate prime client is required for a minimal configuration.

The steps to produce a SPECstorage Solution 2020 result are:

¶ Install the SPECstorage Solution 2020 benchmark on the load generators and the prime client

¶ Edit the sfs_rc configuration file on the prime client

¶ Configure the solution for testing

¶ Start the benchmark

¶ Monitor execution

¶ Inspect results

¶ Produce report

Compared to prior releases, the sfs_rc file is now focused on the user and site specific variables that the user needs
to modify as part of the setup for their environment. Workloads and their parameters are defined in a separate file

(storage2020.yml)

1.2 Example: Official Benchmark Run ï SWBUILD

In this example there are 2 clients, each running CentOS7 with a single mountpoint /mnt/Raid5/test. The user starts
with 1 BUILDS and generates 10 load points while incrementing the number of BUILDS by 1 for each load point.

This creates a curve with 10 data points uniformly distributed. The sfs_rc minimally contains the following:

BENCHMARK=SWBUILD # Choose your workload ï SWBUILD is the lightest weight workload

LOAD=1 # Set your starting LOAD at the lowest value ó1ô

INCR_LOAD=1 # Set the load increment between points to the LOAD value

NUM_RUNS=10 # of ó1ô and set number of points to ó10ô to get ten point curve

The client names appear before the ó:ô telling the prime client which to use as load generators

The directory path to use follws the ó:ô

CLIENT_MOUNTPOINTS=client1:/mn t/Raid5/test client2:/mnt/Raid5/test

EXEC_PATH=/usr/local/bin/netmist

USER=spec

NETMIST_LICENSE_KEY=12345

NETMIST_LICENSE_KEY_PATH=/tmp/netmist_license_key

You do not need to specify any other values in the sfs_rc file to make a benchmark run.

From the prime client, which may or may not be one of the 2 clients listed in CLIENT_MOUNTPOINTS, the user

starts the benchmark with:

[prime client]$ python3 SM2020 - r sfs_rc - s swbuild

or

[prime client]$./SM2020 - r sfs_rc - s swbuild

After the benchmark completes, the results directory will contain the following files:

File Description

sfslog_swbuild.log Overall log file

sfssum_swbuild.txt Summary file in text format

sfssum_swbuild.xml Summary file in XML format

sfsc001.swbuild Detailed results for client

SPECstorage® Solution 2020 Userôs Guide Version 1.2

6

1.3 Prerequisites

¶ Python version 3.8.2 or later must be installed on the Prime Client system.

¶ Matplotlib must be installed on the Prime Client system.
See: http://www.Matplotlib.org

¶ Matplotlib dependencies (dateutil , numpy , pyparsing & six) must also be installed.
dateutil éé pip install python-dateutil
Numpy éé http://www.Numpy.org

Pyparsing é easy_install pyparsing
Six ééé... https://pypi.python.org/pypi/six

¶ PyYAML must be installed on the Prime client.

¶ The test file systems must have the permissions set correctly in order to allow access by the clients.

¶ The test file systems must be mounted or mapped prior to execution of the benchmark. For Windows shares
one may use UNC paths without mapping the shares.

¶ There must be interconnect/network connectivity between any storage system and clients, and between the
clients and the Prime Client. The Prime Client is simply the system on which the benchmark run is started
and could be one of the clients. The prime client on UNIX systems may also present load. When running on
Windows, the prime client cannot also generate load, so at least one additional client is required.

¶ If one is going to run with a heterogeneous set of clients, for example Prime is Linux and remote nodes are
Windows, then one must install and configure Openssh on all of the Windows nodes.

The contents of the SPECstorage Solution 2020 benchmark distribution must be accessible on all the systems where

the benchmark will be installed.

1.4 Installing the SPECstorage Solution 2020 Benchmark

The SPECstorage Solution 2020 benchmark can be installed on client machines running either a UNIX-based or
Windows operating system. Each of these require slightly different configuration and are described separately

below.

1.4.1 Platform common installation and configuration

¶ Ensure that DNS is correctly configured.

¶ Ensure that the clientôs hostname does not appear in the hosts file on either the 127.0.0.1 or ::1 line!

¶ Install Python 3.8.2 or later and ensure that python is in the userôs search path. Python may be downloaded
from http://www.python.org.

¶ PyYAML installation on the prime client. On some systems the yum install will not work properly with
python3. If this happens, use pip3 install PyYAML and possibly pip3 install libyaml - dev

1.4.2 UNIX client installation and configuration:

¶ Ensure that any/all forms of firewalls are disabled on all of the clients. For example:

systemctl stop firewalld

systemctl disable firewalld

setenforce 0

sed - i s/^SELINUX=.*$/SELINUX=disabled/ /etc/selinux/config

You may have to disable iptables also.

¶ All clients must have a /etc/security/limits.conf entry to increase the maximum number of files per user. Enter

these values into the file:

root - nproc 10000

root - nofile 10000

http://www.matplotlib.org/
http://www.numpy.org/
https://pypi.python.org/pypi/six
http://www.python.org/

SPECstorage® Solution 2020 Userôs Guide Version 1.2

7

¶ Ensure that all clients have ssh installed and configured such that clients can start commands on each other
without any password challenges. (Example: ssh hostname command) Setup the ssh keys and permit empty

passwords. This can be exceptionally challenging in Windows versions that support Openssh.

¶ Install the SPECstorage Solution 2020 benchmark using the following steps:

¶ Login to the client (as root)

¶ Download or copy the SPECstorage Solution 2020 ISO or archive to the client

¶ Loop mount the ISO or expand the archive

¶ cd to the top level directory containing the SPECstorage Solution 2020 contents

¶ Enter python 3 SM2020 -- install - dir= destination_director y (where

destination_directory is the full path where you wish to have the benchmark installed)

1.4.3 Windows client installation and configuration:

¶ Ensure that all Windows clients are properly configured in the Active Directory Domain.

¶ Install the SPECstorage Solution 2020 benchmark

¶ Start a command prompt window. This can be done using the óStartô button, choosing óRunéô and
entering ócmdô.

¶ Download or copy the SPECstorage Solution 2020 ISO or archive to the client

¶ Attach the ISO as a virtual optical drive or expand the archive

¶ chdir to the top level directory containing the SPECstorage Solution 2020 directory

¶ Enter python SM2020 -- install - dir =destination_director y (where

destination_directory is where you wish to have the benchmark installed)

Note: Please use a destination_directory that is not in the userôs home directory. The actual path to a
Userôs home directory location varies widely across versions of Windows and can <make heterogeneous

clients> be problematic.

1.5 Editing the configuration file on the prime client

There is one rc file for every benchmark (or workload) that you wish to run. The default configuration file is called

sfs_rc. You should copy and edit this file for your benchmark run. These rc files must reside on the prime client.
The user does not need to edit, or even have, a configuration file on the other load generating clients. You may want
to name your rc files descriptively. The user must edit the rc configuration file as the defaults must be edited to

represent your environment

For a quick start run, on the prime client, the following values must be specified:

¶ BENCHMARK =<benchmark name>
Name of the benchmark to run. Valid values are: SWBUILD, VDA, EDA_BLENDED, AI_IMAGE, and
GENOMICS

¶ LOAD =<integer starting number | integer list of load points>
Each workload has an associated business metric as a unit of workload. The magnitude of the workload to run
is specified with the LOAD parameter in units of the workloadôs business metric. Valid values for LOAD are

either a starting number or a space separated list of values, increasing positive integers. If a single value is
specified, it is interpreted as a starting value and used in conjunction with INCR_LOAD and NUM_RUNS.
If a list of values if specified, at least 10 uniformly spaced data points must be specified for a benchmark
result intended for submission. For more detail on the requirements for uniformly spaced data points, see
section 5.3 ñData Point Specification for Results Disclosureò in the SPECstorage® Solution 2020 Run and
Reporting Rules.

¶ INCR_L OAD=<integer>
Incremental increase in load for successive data points in a run. This parameter is used only if LOAD consists
of a single (initial) value. To ensure equally spaced points, the value of LOAD and INCR_LOAD must be
equal.

SPECstorage® Solution 2020 Userôs Guide Version 1.2

8

¶ NUM_RUNS=<integer>
The number of load points to run and measure (minimum of 10 for a publishable result). This parameter is

used only if INCR_LOAD is specified.

¶ CLIENT_MOUNT POINTS=<mountpoint mountpoint etc>
The list of local mount points, local directories, or shares, to use in the testing. The
CLIENT_MOUNTPOINTS list is used to assign both a load generator as well as a storage location to a single
business metric. The order of entries in the CLIENT_MOUNTPOINTS list matters, as the list is consumed

sequentially to assign a client and a storage location to each business metric as the load scales up. Once the
list of CLIENT_MOUNTPOINTS is exhausted, the list will be reused from the start as many times as
necessary.
The value of CLIENT_MOUNTPOINTS can take several different forms:

¶ UNIX style: client:/exportfs1 client:/exportfs2 é
Used for local storage or mounted network shares

¶ Windows style: client:\\server\exportfs1 client:\\server\exportfs2 é

¶ Use a file that contains the mount points: mountpoints_file.txt. The file by default is found in the same
directory as the sfs_rc file, unless specified with a full pathname.

¶ EXEC_PATH=<pathname>
The full path to the SPECstorage Solution 2020 executable. Such as /usr/local/spec/netmist Currently the
executable is called netmist for POSIX systems and netmist.exe for Windows systems.

¶ USER=<user name>

The user account name, which must be configured on all clients, to be used for the benchmark execution. In
homogeneous configurations this identifies the user account use for running the benchmark. In a UNIX
environment use a simple common username for all load generators (user33). In a Windows environment,
prefix the user with the domain name separated by a backslash (DOMAIN\User33).

¶ IPV6_ENABLE =<0 or 1>

Set to ñ1ò or ñYesò when the benchmark should use IPv6 to communicate with other benchmark processes. It
defaults to ó0ô.

¶ PASSWORD=<password>
The password for the user specified in USER. Used for Windows configurations, whether homogeneous or

heterogeneous.

¶ NETMIST_LICENSE_KEY =<integer value>
License code obtained from SPEC office at purchase time, a simple number.

¶ NETMIST_LICENSE_KEY_PATH = <pathname>
This file gets initialized with the value specified in the NETMIST_LICENSE_KEY variable when the
benchmark runs. The path to the license key file. Example: /tmp/netmist_license_key or

C:\tmp\netmist_license_key.

Pro Tip: If this is your first time running the benchmark use one load generating client (which means two clients in
the case of Windows as the Prime Client cannot be a load generator). And run the SWBUILD workload regardless
of what workload you will eventually run. This will simplify debugging your test setup configuration. Other

workloads are more demanding on the client and require much more space per business metric to run.

1.6 Configuring the storage solution for testing

¶ Mount all working directories on the clients (UNIX only). The path names must match the values
specified in the CLIENT_MOUNTPOINTS parameter in the SPECstorage Solution 2020 configuration
file. Mapping the shares is not needed if running on Windows and using UNC paths.

¶ Ensure the exported file systems have read/write permissions.

¶ Ensure access is permitted for username, password, and domain. (SMB testing only)

SPECstorage® Solution 2020 Userôs Guide Version 1.2

9

1.7 Starting the benchmark

The SM2020 python script is run on the Prime Client and allows the user to input parameters, run the

benchmark, and review the results for all workloads. The script is executable and may or may not work without

typing python3 SM2020.

¶ Change directories to the destination_directory specified during install.

¶ On the Prime client enter ópython 3 SM2020 - r sfs_config_file - s output_files_suffix ô

1.8 Monitoring the benchmark execution

¶ On the Prime client, change directories to the destination_directory from the installation step above,
then ócd resultô

The user may now examine the benchmark logs, as well as the results. As the benchmark runs, the results are stored

in the files with names like:

sfssum_*.{txt,xml} Summary file used in the submission process described later.

sfslog_*.log Log file of the current activity.

After all load points are complete, the results from each client are collected into the result directory on prime client.

The client logs are files with names like:

sfsc*.* The client log files.

Pro tip:

If the benchmark terminates abnormally, there are also logs on each client in /tmp/netmist_* that contain additional

information about any errors that were found.

1.9 Examining the results after the benchmark execution has completed

The results of the benchmark are summarized in the sfssum.* file s in the results directory on the prime client. These
may be examined with any text editing software package. The sfssum_*.xml is the XML summary file that will be

used for the submission process, described later in this document.

1.10 Where Do You Go From Here?

For any reasonable storage solution used in an enterprise data center, the number of load generators required to
measure peak load of the storage server numbers in the tens of clients. The benchmark efficiently uses clients to

generate a load. But the principles above apply to a larger test setup.

Refer to Appendix A ï Building the SPECstorage 2020 Benchmark Components for detailed information on how to
build the benchmark, set advanced capability parameters, customize a run and configure a heterogeneous setup of
UNIX and Windows clients. See section 3.3 Configuring Required Benchmark Parameters and section 5.

Submission and Review Process details configuring the benchmark for and generating an official results submission.

2 SPECstorage Solution 2020 Benchmark

The SPECstorage Solution 2020 benchmark is used to measure the maximum sustainable throughput that a storage
solution can deliver. As mentioned before, the benchmark is protocol independent and will generate load over any

version of NFS or SMB, clustered file systems, object oriented file systems, local file systems, or any other POSIX

compatible file system. This provides strong portability across operating systems, and storage solutions.

SPECstorage® Solution 2020 Userôs Guide Version 1.2

10

2.1 Simulation of Workloads

The SPECstorage Solution 2020 workloads are a mixture of file meta-data and data oriented operations. The
SPECstorage Solution 2020 benchmark is fully multi-client aware and is a distributed application that coordinates
and conducts the testing across all of the client nodes that are used to measure the performance of the storage

solution that is providing files to the application layer on the workstations.

Each workload consists of several typical file operations. The following is the current set of operations that can be

measured in a workload:

Netmist

Operation Description

read Read file data sequentially

read_file Read an entire file sequentially

mmap_read Read file data using the mmap() API

read_random Read file data at random offsets in the files

write Write file data sequentially

write_file Write an entire file sequentially

mmap_write Write a file using the mmap() API

write_random Write file data at random offsets in the files.

rmw Read+modify+write file data at random offsets in files

mkdir Create a directory

rmdir Removes a directory

unlink Unlink/remove an empty file

unlink2 Unlink/remove a non-empty file

append Append to the end of an existing file

lock Lock a file

access Perform the access() system call on a file

stat Perform the stat() system call on a file

chmod Perform the chmod() system call on a file

create Create a new file

readdir Perform a readdir() system call on a directory

statfs Perform the statfs() system call on a filesystem

copyfile Copy a file

rename Rename a file

pathconf Perform the pathconf() system call

neg_stat Perform a stat() on non-existent files

truncate Truncate a file to a new size.

The read() and write() operations are performing sequential I/O to the data files. The read_random() and
write_random() perform I/O at random offsets within the files. The read_file() and write_file() calls perform a whole

file operation.

The results of the benchmark are: <should this section be expanded, with example?>

1. Maximum workload-specific Business Metric achieved.
2. Aggregate Ops/sec that the storage solution can sustain at requested or peak load.

3. Average file operation latency in milliseconds.

4. Aggregate KiB/sec that the storage solution can sustain at requested or peak load.

These are the primary metrics and the minimum that must be stated in public disclosures:

1. Peak aggregate Ops/sec

2. Overall Response Time (ORT)

SPECstorage® Solution 2020 Userôs Guide Version 1.2

11

2.2 SPECstorage Solution 2020 Workloads and Business Metrics

The SPECstorage Solution 2020 benchmark includes multiple workloads each with a business metric for reported

results as shown in the following table:

The user has the option to submit results using any or all of the above workloads.

The SM2020 Python script accepts benchmark run configuration information, starts benchmark execution, and

collects results from the SPECstorage Solution 2020 benchmark.

2.3 Resource Requirements

As a helpful guideline, here are some rules of thumb for the resources required per business metric for the different

workloads.

2.4 Scale

Scaling in SPECstorage Storage 2020 is expected to be somewhere around 4 Million load generating processes

globally, where the load generators may be geographically distributed around the planet.

There is a sophisticated synchronization mechanism that keeps all of the geographically distributed load generating

processes in sync, at a sub milli-second resolution.

2.5 SM2020 ï the Benchmark Manager

The benchmark manager is called SM2020. It is a Python program that requires Python version 3.8.2 or higher. It is

recommended to get Python from http://www.python.org/

You can get the syntax by running:

% python3 ./bin.in/dist_pro/SM2020 - h

Workload Description Business Metric

SWBUILD Software build BUILDS

VDA Video data acquisition STREAMS

EDA_BLENDED Electronic design automation JOBS

AI_IMAGE AI Image processing JOBS

GENOMICS Genomic processing JOBS

Storage target capacity requirements per business metric

SWBUILD 5 GiB per BUILD

VDA 24 GiB per STREAM

EDA_BLENDED 11 GiB per JOB

AI_IMAGE 100 GiB per JOB

GENOMICS 3.5 GiB per JOB

Client memory requirements per business metric:

SWBUILD 650 MiB per BUILD

VDA 100 MiB per STREAM

EDA_BLENDED 520 MiB per JOB

AI_IMAGE 1.7 GiB per JOB

GENOMICS 416 MiB per JOB

http://www.python.org/

SPECstorage® Solution 2020 Userôs Guide Version 1.2

12

 Usage: python SM2020 [options]

 Command line option:

 Required for Benchmark Execution:

 [- r <file>] or [-- rc - file=<file>]................. Specify rc file

 Required for Benchmark Installation:

 [-- install - dir=<directory>]....................... Specify an installation directory

(must not exist)

 Optional:

 [- s <suffix>] or [-- suffix=<suffix>].............. Suffix to be used in log and summary

files (default=sfs2020)

 [- b <file>] or [-- yaml - file=<file>]............... benchmark definition file

 [- d <dir>] or [-- results - dir=<dir>]............... Results directory, use full path

 [- i] or [-- ignore - override].... Bypass override of official workload

parameters

 [- e <filename>] or [-- export=<filename>].......... Export workload definitions to a file

 [- a].. Auto mode (max): finds maximum passing

load va lue

 [- A <scaling>].................................... Auto mode (curve): generate 10 point

curve based on result of - a (if used) or LOAD

 [- A] (continued).................................. <scaling> is a percentage between 0 -

100 to scale the maximum LOAD .

 [- A] (continued).................................. If - A and - a are used together a

'<suffix>.auto' is used for finding the maximum.

 [-- save - config=<file>]............................ Save the token config file and

executeable command line args

 [-- test - only]..................................... Simulate a set of load points without

actually running.

 [- h].. Show usage info

 [- v].. Show version number

 [-- debug]... Detailed output

The only required parameter is an rc file. The -a and -A options to SM2020 are not valid for publication runs. These

options are included as a convenience only. The base directory has an example called sfs_rc, whose contents are:

sfs_rc

Specify netmist parameters for generic runs in this file.

The following parameters are configurable within the SFS run and

reporting rules.

Legacy settings for current sfs_rc files

Used for Unix only, or Wind ows only environments.

Example for all Unix:

CLIENT_MOUNTPOINTS=clientname:/mnt/testdir

USER=spec

PASSWORD=MYpa55w0rd

EXEC_PATH=/usr/local/bin/netmist

NETMIST_LOGS=

NETMIST_LICENSE_KEY= <License number>

NETMIST_LICENSE_KEY_PATH=/tmp/netmist_license_key

PDSM_MODE=

PDSM_INTERVAL=

UNIX_PDSM_LOG=

UNIX_PDSM_CONTROL=

EXEC_PATH=/usr/local/bin/netmist

Example for all Windows:

CLIENT_MOUNTPOINTS=clientname: \ \ servername \ share \ testdir

USER=mydomain \ spec

PASSWORD=MYpa55w0rd

SPECstorage® Solution 2020 Userôs Guide Version 1.2

13

EXEC_PATH=C:\ \ tmp \ \ netmist.exe

NETMIST_WINDOWS_LOGS=

NETMIST_LICENSE_KEY= <License number>

NETMIST_LICENSE_KEY_PATH=C:\ tmp \ netmist_license_key

PDSM_MODE=

PDSM_INTERVAL=

WINDOWS_PDSM_LOG=

WINDOWS_PDSM_CONTROL=

EXEC_PATH=C:\ \ tmp \ \ netmist.exe

USER=domain \ account

PASSWORD=MyPa55w0rd

CLIENT_MOUNTPOINTS=

USER=

PASSWORD=

In Legacy Unix only mode with a Unix prime this must be set to a Unix path.

In Legacy Windows only mode, EXEC_PATH must be set to a Windows path.

In heterogeneous modes EXEC_PATH must be set to a Unix path.

**** This field cannot be empty ****

EXEC_PATH=

Legacy mode + heterogeneous client types:

These client lists are used in the legacy mode to provide heterogeneous

client support.

This allows heterogeneous clients sharing same legacy workload.

This mode ignores the platform_type fiel d in the YAML config file.

For these lists:

1) Both lists have to be populated

2) Corresponding *_EXEC_PATH, *_USER, *_PASSWORD need to be present

UNIX_CLIENT_LIST=

WINDOWS_CLIENT_LIST=

Heterogeneous clients with their heterogeneous OS types specified in the YAML

"platform_type" fields.

For mixed OS workload tests:

1) change "platform_type" in YAML to the appropriate OS in each workload

component

2) Provide both Windows and Unix mount - points

< WINDOWS_CLIENT_MOUNTPOINTS= and UNIX_CLIENT_MOUNTPOINTS= >

Important: Both OSs should have exactly same number of mount - points

3) Set Prime path "EXEC_PATH" to UNIX path. Prime in this mode must be

a UNIX system.

#----------------------------- ---------------

UNIX Settings for heterogeneous client pool

Example:

UNIX_CLIENT_MOUNTPOINTS=client1:/mnt/testdir

UNIX_EXEC_PATH=/usr/local/bin/netmist

UNIX_USER=spec

NETMIST_LOGS=

NETMIST_LICENSE_KEY= <License number>

NETMIST_LICENSE_K EY_PATH=/tmp/netmist_license_key

PDSM_MODE=

PDSM_INTERVAL=

UNIX_PDSM_LOG=

UNIX_PDSM_CONTROL=

#--

UNIX_CLIENT_MOUNTPOINTS=

UNIX_EXEC_PATH=

SPECstorage® Solution 2020 Userôs Guide Version 1.2

14

UNIX_USER=

#--

Windows Settings for heterogeneous client pool

Example:

WINDOWS_CLIENT_MOUNTPOINTS=WIN10M1:\ \ smbserver \ test

WINDOWS_EXEC_PATH=C:\ \ tmp \ \ netmist.exe

WINDOWS_USER=labnet\ \ administrator

WINDOWS_PASSWORD=MYpa55w0rd

NETMIST_WINDOWS_LOGS=

NETMIST_LICENSE_KEY= <License number>

NETMIST_LICENSE_KEY_PATH=C:\ tmp \ netmist_license_key

PDSM_MODE=

PDSM_INTERVAL=

WINDOWS_PDSM_LOG=

WINDOWS_PDSM_CONTROL=

#--

WINDOWS_CLIENT_MOUNTPOINTS=

WINDOWS_EXEC_PATH=

WINDOWS_USER=

WINDOWS_PASSWORD=

Common Settings for all modes

Official BENCHMARK values are

- SWBUILD

- VDA

- EDA_BLENDED

- AI_IMAGE

- GENOMICS

BENCHMARK=SWBUILD

LOAD=1

INCR_LOAD=1

NUM_RUNS=1

IPV6_ENABLE=0

PRIME_MON_SCRIPT=

PRIME_MON_ARGS=

NETMIST_LOGS=

NETMIST_WINDOWS_LOGS=

NETMIST_LICENSE_KEY=

NETMIST_LICENSE_KEY_PATH=/tmp/netmist_license_key

DO NOT EDIT BELOW THIS LINE FO R AN OFFICIAL BENCHMARK SUBMISSION

Constraints and overrides on the values below this line can be found in the

benchmark XML file (default is benchmarks.xml). To bypass all overrides

use the -- ignore - overrides flag in SfsManager. Using the flag will make

the results invalid for formal submission.

MAX_FD=

LOCAL_ONLY=0

FILE_ACCESS_LIST=0

PDSM_MODE of 0 create shared PDSM log file with overwrites.

PDSM_MODE of 1 create shared PDSM log file with open append.

PDSM_MODE=

PDSM_INTERVAL # Interval in seconds

SPECstorage® Solution 2020 Userôs Guide Version 1.2

15

PDSM_INTERVAL=

<PLATFORM>_PDSM_LOG filename Full pathname to the PDSM log file . Used to

log the details of every proc's activities.

UNIX_PDSM_LOG=

WINDOWS_PDSM_LOG=

<PLATFORM>_PDSM_CONTROL filename Full pathname to the PDSM control file. Used

for dynamically changing workloads.

UNIX_PDSM_CONTROL=

WINDOWS_PDSM_CONTROL=

Some things to keep in mind:

¶ You never need single or double quotes around anything

¶ The only parameters that must be explicitly specified are BENCHMARK, LOAD, INCR_LOAD,

NUM_RUNS, CLIENT_MOUNTPOINTS, USER, EXEC_PATH, and PASSWORD (Windows only)

¶ The binary parameters all get translated to 1 or 0, but you can also use "yes", "no", "Y", "N", "on", or "off"

2.5.1 The Summary Files

Each run will produce two summary files: sfssum_<suffix>.txt and sfssum_<suffix>.xml. The txt file is a human

readable summary file with the following fields

3 Installing and Configuring the Benchmark Environment

This section provides detailed information on hardware/software configuration requirements for the load generators
and the storage solutions. It also includes detailed installation instructions for the benchmark on the load generators

for each of the supported operating systems.

3.1 Setting up the Solution Under Test (SUT)

The Solution Under Test (SUT) typically consists of the load generators, the network, the file server(s), and finally
the stable backend storage. Results are reported and published for the entire configuration. More details of the SUT

may be found in section 6.4 of the SPECstorage Solution 2020 Run and Reporting Rules document.

There are several things you must set up on your storage solution before you can successfully execute a benchmark

run.

Field Value

1 Business metric (may be blank for custom workloads)

2 Requested op rate (blank if not set)

3 Achieved op rate in Ops/s

4 Average latency in milliseconds

5 Total throughput in KiB/s

6 Read Throughput in KiB/s

7 Write Throughput in KiB/s

8 Run time in seconds

9 # of clients

10 # of procs per client

11 Average file size in KiB

12 Client data set size in MiB

13 Total starting data set size in MiB

14 Total initial file set space in MiB

15 Max file space in MiB

16 Workload name

17 Run validity field (blank if valid or no validation criteria exist in custom workload)

SPECstorage® Solution 2020 Userôs Guide Version 1.2

16

1. Configure enough disk space. Refer to section 3.3 Resource Requirements for rules of thumb. You may
mount your test disks anywhere in your server's file name space that is convenient for you. The
maximum ops/sec a storage solution can process is often limited by the number of independent disk
drives configured on the server. In the past, a hard disk drive could generally sustain on the order of 100-

200 NFS or SMB ops/sec. This was only a rule of thumb, and this value will change as new technologies
become available.

2. Initialize (if necessary or desired) and mount all file systems. According to the Run and Reporting Rules,
it is not necessary to (re-)initialize the solution under test prior to a benchmark run. However, in the full
disclosure report for a benchmark run, any configuration steps or actions taken since the last (re-
)initialization must be documented for each component of the solution. Therefore, it may be desirable to

re-initialize the solution between runs, depending on the testerôs objective. See section 5.2 ñSolution File
System Creation and Configurationò in the SPECstorage® Solution 2020 Run and Reporting Rules for
more detail.

3. Export or share all file systems to all clients. This gives the clients permission to mount/map, read, and
write to your test storage. The benchmark program will fail without this permission.

4. Verify that all RPC services function correctly. The clients may use port mapping, mount, and NFS

services, or Microsoft name services, and file sharing, provided by the server. The benchmark will fail if
these services do not work for all clients on all networks. If your client systems have NFS client software
installed, one easy way to do this is to attempt mounting one or more of the server's exported file systems
on the client. On a Windows client one may try mapping the shares to ensure that the services are
correctly configured on the SMB server.

5. Ensure your solution is idle. Your solution or Solution Under Test (SUT) consists of the load generating

clients, the network and the storage being measured. Any other work being performed by your solution is
likely to perturb the measured throughput and response time. The only safe way to make a repeatable
measurement is to stop all non-benchmark related processing on your solution during the benchmark run,
dedicating the components of the solution for the duration of the test.

6. Ensure that your test network is idle. Any extra traffic on your network will make it difficult to reproduce
your results and will probably make your solution look slower. The easiest thing to do is to have a

separate, isolated network for all components that comprise the solution. Results obtained on production
networks may not be reproducible. Furthermore, the benchmark may fail to correctly converge to the
requested load rate and behave erratically due to varying ambient load on the network. Please do not run

this benchmark over a corporate LAN. It can present heavy loads and adversely affect others on

the same shared network. Before doing this, be sure your resume is up to date.

At this point, your solution should be ready for a benchmark measurement. You must now set up a few things on

your client systems so they can run the benchmark programs.

3.2 Setting up the Load Generators

Running the SM2020 Python script requires that the Python 3.8.2 and PyYAML be installed.

SPECstorage Solution 2020 benchmark runs should be done as a non-root user. On UNIX systems, for example,

create a ñspecò user.

The SPECstorage Solution 2020 binaries must be installed on clients. There are a couple of methods to install the

SPECstorage Solution 2020 binaries:

On all the clients:

1. Login as ñrootò
2. Change directory to the top level directory containing the SPECstorage Solution 2020 benchmark files

3. Enter ópython3 SM2020 ïinstall-dir=ñdestination_directoryòô

Alternately, just copy the SPECstorage Solution 2020 kit to all clients using any feasible method.

SPECstorage® Solution 2020 Userôs Guide Version 1.2

17

Verify that all clients, including prime, have the SPECstorage Solution 2020 binary at the same location with the

same name and that this matches the EXEC_PATH parameter in the RC file.

Additional client setup validation:

1. Configure and verify network connectivity between all clients and server. Clients must be able to send IP
packets to each other and to the server. How you configure this is system-specific and is not described in
this document. Two easy ways to verify network connectivity are to use a ñpingò program or the netperf

benchmark (http://www.netperf.org).
2. Before starting the benchmark, ensure that the prime client can execute commands on the remote clients

using ssh with no password challenges. Refer to Appendix B for an example of how to do this. (On Unix-
based systems)

3. Ensure that the file systems specified in the CLIENT_MOUNTPOINTS string are mounted and
accessible on all clients. Where possible, it may help to mount all test file systems to a path under a

tmpfs directory. This avoids filling local disks if a mount fails. If using Windows clients with UNC paths
in CLIENT_MOUNTPOINTS, verify that the clients can access those UNC paths with the USER and
PASSWORD specified in the RC file.

4. Clients must have free space for logs generated during the course of the run. In general, logs can vary
between 500 KiB to 100 MiB or more. If necessary, a separate log path can be specified in the RC file.

See: NETMIST_LOGS= in the sfs_rc file.

IMPORTANT ï If Windows Firewall is turned on; each program will need to be added to the exceptions list. Either
open the Windows Firewall control panel and add the applications manually or wait for the pop-up to appear after

the first execution of each application. Other locally-based firewall applications may require a similar allowance.
Note that on Windows systems additional firewall options appear, and may default to enabled, upon joining a

domain. After joining a domain, verify that your firewall settings are as expected.

Also, one should disable the Windows Defenderôs Virus and thread protection Ÿ ñReal time protectionò checking.

Failure to do this will result in very high CPU usage on the client during the measurement, and potentially lower

results.

IMPORTANT ï Windows client load generator configurations must have one additional client that is used as the
Prime client and this client cannot be used to generate load. This constraint is due to Windows security mechanisms

that prevent a client from logging into itself. You may use a single client on non-Windows clients, but it is

recommended that the prime client not generate load, which would require at least two clients.

The order of the CLIENT_MOUNTPOINTS list will affect how the load scales up in the SUT ï be sure to order this
list to avoid artificial bottlenecks. For example, if the SUT has many load generators and many file systems

accessible by all load generators, it may be desirable to order the CLIENT_MOUNTPOINTS list so that a unique
load generator and unique file system is used with each CLIENT_MOUNTPOINTS entry until re-use is required to
exhaust all possible combinations. By spreading the load as evenly as possible, it is possible to avoid one load
generator or one file system becoming a hot-spot. For more details, see section 3.3 ñConfiguring the Required

Benchmark Parametersò below.

While the ideal way to order the CLIENT_MOUNTPOINTS list for a given SUT will depend heavily on its
architecture, a first approach as mentioned above in the Running the Benchmark for the First TimeRunning the

Benchmark for the First Time section would be to uniformly (round robin) specify the clients and the mount points.

3.2.1 Configuring SPECstorage Solution 2020 Windows Clients for Auto-Startup

The following are the steps to follow to configure Windows clients in order to allow the Prime Client to

communicate with them directly and remotely start the netmist process when a benchmark run is started.

Granting DCOM Remote Launch permissions:

1. Click Start, click Run, type DCOMCNFG, and then click OK.
2. In the Component Services dialog box, expand Component Services, expand Computers.

SPECstorage® Solution 2020 Userôs Guide Version 1.2

18

3. Right mouse click on My Computer and select properties.
The My Computer dialog box appears.

4. In the My Computer dialog box, click the COM Security tab.
5. Under Launch and Activate Permissions, click Edit Limits.

6. In the Launch Permission dialog box, follow these steps if your name or your group does not appear in
the Groups or user names list:
a. In the Launch Permission dialog box, click Add.
b. In the Select Users, Computers, or Groups dialog box, add your name and the group in the Enter the

object names to select box, and then click OK.
7. In the Launch Permission dialog box, select your user and group in the Group or user names box. In the

Allow column under Permissions for User, select Remote Launch, and then click OK.

3.3 Configuring Required Benchmark Parameters

Once you have the clients and server configured, you must set some parameters for the benchmark itself, which you
do in a file called the ñsfs_rc fileò. The actual name of the file is a prefix picked by you, and the suffix ñ_rcò. The
default version shipped with the benchmark is delivered as ñsfs_rcò in the benchmark source directory. One may use

any text editor to modify parameters in the rc files.

There are several parameters you must set, and several others you may change to suit your needs while performing a
disclosable run. There are also many other parameters you may change which change the benchmark behavior, but
lead to a non-disclosable run (for example, turning on the PIT_SERVER). See the SPECstorage Solution 2020 Run

Rules document for the classification of all the parameters.

The parameters you must set are:

1. BENCHMARK =<name>
The name of the workload to run. SWBUILD, VDA, EDA_BLENDED , AI_IMAGE, or GENOMICS.

2. CLIENT_MOU NTPOINTS=<mountpoint mountpoint etc | file pathname containing list of

mountpoints>
This parameter specifies the names of the file systems the clients will use when testing the storage
solution. The business metric values are spread among the client mount points in the following way. If
the number of items N in the CLIENT_MOUNTPOINTS list is greater than the business metric value L
(the current value for LOAD), then the first L items from the list are used, one business metric value per

client/mountpoint. If L>N, then the N+1 business metric value will wrap around to the beginning of the
list and allocation proceeds until all L business metrics have been allocated, wrapping around to the
beginning of the list as many times as is necessary.
Examples:

For an NFS configuration:

client_name:/mount_point_path client_name:/mount_point_path

For a SMB configuration (client_name followed by UNC path):
client_name:\\server\path client_name:\\server\path é

When using an external file: (CLIENT_MOUNTPOINTS=mountpoints.txt), the syntax for each line in

the file is ñclient_name pathò (note there is no ó:ô in the ñclient_name pathò pairs). Multiple mountpoints
for a single load generator can be specified on the same line, separated by spaces. However, because the
CLIENT_MOUNTPOINTS list is used in order, this may create artificial bottlenecks if not done
carefully. The lines do not need to be unique. For example:

client1 /mnt

client1 /mnt
client2 /mnt
client3 /mnt1

SPECstorage® Solution 2020 Userôs Guide Version 1.2

19

client3 /mnt2

Reminder: If using Windows load generators, the Prime Client must not be listed in the
CLIENT_MOUNTPOINTS list.

3. LOAD , INCR_LOAD , and NUM_RUNS
These parameters specify the aggregate load the clients will generate. To test a set of evenly spaced load
points, set all three parameters. Set LOAD to the lowest load level, set INCR_LOAD the amount you
would like to increase the load for each measured run, and set NUM_RUNS to the number of times you
would like to increment the load. This is the easiest way to configure a disclosable run. For example, if
you would like to measure 10 evenly spaced points ending at 2000, you would set LOAD to 200,

INCR_LOAD to 200 and NUM_RUNS to 10.
4. EXEC_PATH=<pathname>

Set this to the absolute path to the benchmark executable. The same path will be used on all clients, so
the executable must be at the same path on all clients.
UNIX_EXEC_PATH =<pathname>
The absolute path to the benchmark executable used for remote load generators that are Unix based when

running in a heterogeneous configuration of Windows and Unix client.

E.g. /usr/local/bin/netmist

WINDOWS_EXEC_PATH =<pathname>
The absolute path to the benchmark executable used for remote load generators that are Windows based.

Only used for heterogeneous configurations of Windows and Unix clients.

E.g. C:\\tmp\\netmist.exe

In heterogeneous mode, where there are a mixture of Unix and Windows clients, then the EXEC_PATH
is used only by the Prime Client (and must be set), the client load generators will use the appropriate

UNIX_EXEC_PATH or WINDOWS_EXEC_PATH variables.
5. USER=<string>

Set this to the User ID for launching the benchmark on all clients. (On Windows systems this includes
the Domain\User) E.g. DOMAIN\User33.
UNIX_USER=<string>
In heterogeneous mode, where this is a mixture of Unix and windows clients, then the UNIX_USER and

WINDOWS_USER variables are used.
WINDOWS_USER=<string>

The user domain and account for the Windows account to be used to execute the benchmark. Only used
for heterogeneous configurations of Windows and Unix clients. E.g. domain\administrator

6. PASSWORD=<string>
Set this to the account password for running the benchmark (Windows clients only). In heterogeneous

mode, the UNIX_PASSWORD and WINDOWS_PASSWORD variables are used.

3.3.1 Configuring Other Parameters in the RC File

In addition to the parameters required to be changed for a run (described in section Quick Start Guide), the
following parameters are optionally adjustable in the RC file ï note that some may not be changed or set for a

publishable run:

1. PRIME_MON_SCRIPT and PRIME_MON_ARGS
This is the name (and argument list) of a program which the SPECstorage Solution 2020 benchmark will
execute during the various phases of the benchmark. It only runs on the Prime Client. This is often used

to start some performance measurement program while the benchmark is running to assist with
debugging and tuning your system. An example monitor script ï sfs_ext_mon ï is provided in the
SPECstorage Solution 2020 source directory. For a disclosable run, this program/script must be
performance neutral and its actions must comply with the SPECstorage Solution 2020 Run and

SPECstorage® Solution 2020 Userôs Guide Version 1.2

20

Reporting Rules. If this option is used, the script used, as well as the contents of the
PRIME_MON_ARGS parameter, must be disclosed in the Other Solution Notes (otherSutNotes) field.
Longer scripts may be attached as a configuration diagram and referenced in the Other Solution Notes
(otherSutNotes) field. The script must complete quickly, or be non-block (run processes in the

background) for the benchmark to execute correctly.
a. PRIME_MON_SCRIPT =<pathname>

The name of a shell script or other executable program which will be invoked to control any external
programs. These external programs must be performance neutral and their actions must comply with
the SPECstorage Solution 2020 Run and Reporting Rules. If this option is used, the executable or
script used must be disclosed and the script must be noted in the Other Solution Notes

(otherSutNotes) field of the disclosure. Scripts may also be attached as config diagrams, so they are
not inline with the submission text. If doing this, the script attached as a config diagram must be
referenced from the Other Solution Notes (otherSutNotes) field. For an example of how to write a
script to be invoked by PRIME_MON_SCRIPT, see the sfs_ext_mon example script included with
the benchmark.

b. PRIME_MON_ARGS

Arguments which are passed to the executable specified in PRIME_MON_SCRIPT. If this option is
used, the values used must be noted in the Other Solution Notes (otherSutNotes) field of the
disclosure. Each argument passed via PRIME_MON_ARGS appears in a separate command line
argument to PRIME_MON_SCRIPT ï there is no escaping, etc. to encapsulate all
PRIME_MON_ARGS into one argument to PRIME_MON_SCRIPT.

2. NETMIST_LOGS

Used to set a non-default location for the netmist_C*.log files. /tmp/ or c:\tmp\ are used by default.
a. NETMIST_LOGS= <directory pathname for log files>

Set the path to the directory in which to store log files from the load generators. The same path will
be used on all Unix clients. If this path is not set, /tmp/ will be used.

b. NETMIST_WINDOWS_LOGS =<directory pathname for log files>
Set the path to the directory in which to store the log files from the load generators. The same path

will be used by all of the Windows clients. If this path is not set, c:\tmp\ will be used.
3. IPV6_ENABLE

Flag to set for when the benchmark should use IPv6 to communicate with other benchmark processes.
4. MAX_FD *

Sets the maximum number of file descriptors each proc can use.
5. LOCAL_ONLY *

Use sh instead of ssh/rsh ï confines the benchmark to run only on the prime client. This works on UNIX
and Windows systems. This option is for benchmark development testing purposes only and not
recommended for use. This option may be deprecated in future releases.

6. FILE_ACCESS_LIST*

If enabled, the benchmark will dump a list of all files accessed during each load point.

* This parameter may not be changed or set to a non-default value for a publishable run.

Note: For previous SPECsfs2014 benchmark users, the WARMUP_TIME parameter is now in the storage2020.yml

file.

3.4 Detailed Client Log Files

More detailed client logs can be found on each client in the path specified by the NETMIST_LOGS rc file
parameter, or /tmp/ or C:\tmp\ by default. It is recommended that these log files be purged from each client between

each run of the benchmark ï you may wish to save these with the other log files from the run before deleting them.

SPECstorage® Solution 2020 Userôs Guide Version 1.2

21

4 Running the Benchmark and Interpreting Results

This section contains information on the SPECstorage Solution 2020 benchmark directory structure, running the

benchmark, and interpreting the benchmark metrics output generated in the summary results file.

4.1 SPECstorage Solution 2020 Benchmark Directory Structure

The following is a quick overview of the benchmarkôs directory structure. Please note that the variable ñ$SPECò

used below represents the full path to the install_directory, where the benchmark is installed.

1. $SPEC
The directory contains the SPECstorage Solution 2020 benchmark Makefile. The makefile is used to
build tools, compile the benchmark source into executables, and to clean directories of all executables.
Pre-built binaries are provided for many operating systems; therefore compilation is probably not
required. The top-level directory also contains the SM2020 Python script and SpecReport tools as well as
the example sfs_rc and sfs_ext_mon files.

2. $SPEC/bin
The benchmark binaries for the specific environment being used are located in the ñ$SPEC/binò
directory if the user has built the binaries using the Makefile provided.

3. $SPEC/binaries
Contains the pre-built binaries for various operating systems.

4. $SPEC/docs

Contains documentation for the SPECstorage Solution 2020 benchmark.
5. $SPEC/msbuild

Contains the Microsoft Visual Studio Community 2015 solution file used to compile the benchmark on
Windows.

6. $SPEC/netmist
Contains the source files for the netmist load generator.

7. $SPEC/redistributable_sources
This directory contains tools relevant to the execution or analysis of SPECstorage Solution 2020
benchmark runs licensed under compatible terms.

8. $SPEC/win32lib
Contains compatibility libraries for building the benchmark under Microsoft Visual Studio.

9. $SPEC/results

Contains benchmark log and results files created during a benchmark run. This directory is created upon

successful start of benchmark execution if it does not exist.

4.2 Pre-Compiled SPECstorage Solution 2020 Benchmark Binaries

The SPECstorage Solution 2020 benchmark includes pre-compiled binaries for a large number of supported

platforms and architectures.

The following is a list of the vendors and their respective operating system levels for which the benchmark

workloads have been pre-compiled and included with the benchmark distribution.

¶ IBM Corporation
o AIX 7.2

¶ FreeBSD
o FreeBSD 11

¶ Oracle Corporation
o Solaris 11.1, Solaris 11.3

¶ Red Hat, Inc.
o RHEL 6, RHEL 7, RHEL 8

¶ Cent OS

SPECstorage® Solution 2020 Userôs Guide Version 1.2

22

o CentOS 7, CentOS 8.

¶ Apple Inc.
o Mac OS X

¶ Microsoft Corporation
o Windows 10, Windows Server 2012R2, Windows Server 2016, Windows Server 2019

4.3 Building the SPECstorage Solution 2020 Benchmark

If it is necessary or desired for the user to compile a version of the benchmark source for testing, a generic UNIX
makefile is provided in the benchmark top level directory ($SPEC). For a valid submission, the makefile may be

modified or supplemented in a performance neutral fashion to facilitate the compilation and execution of the
benchmark on operating systems not included within the benchmark distribution. Modifications must be disclosed

and reviewed and accepted by the SPEC Storage subcommittee before use in a publication.

There are additional prerequisites to build the benchmark. If one is trying to use the standard ñmakeò described

below, then it is up to the developer to install all necessary packages to support building libyaml. (make, gcc,

autom4te, automake, autoconf, libtool, m4).

To build the software simply type: make.

The Visual Studio solution file is also provided to compile the Windows executables. The solution file is located in
the $SPEC/msbuild subdirectory. The SPECstorage Solution 2020 benchmark can be built with Visual Studio C++
2015 Express. See section 10.2 Building the SPECstorage Solution Benchmark for Windows for the build

instructions for Visual Studio builds.

4.4 Using SM2020

The SM2020 Python script is used to run the benchmark. The results obtained from multiple data points within a run

are also collected in a form suitable for use with other result formatting tools.

4.4.1 Example of SUT Validation

By default, and during a publication run, the client validates that it can perform all of the POSIX level operations
that will be used during the benchmark before starting benchmark execution. If the validation fails, then the

benchmark will terminate, with errors collected in the log files.

4.4.2 Example of a Benchmark Run

Example of run with only one load point for brevity.

<<< Thu Aug 13 12:42:43 2020: Starting SWBUILD run 1 of 1: BUILDS=1 >>

 SPECstorage(TM) Solution 2020 Release $Revision: 2462 $

 This product contains benchmarks acquired from several sources who

 understand and agree with SPEC's goal of c reating fair and objective

 benchmarks to measure computer performance.

 This copyright notice is placed here only to protect SPEC in the

 event the source is misused in any manner that is contrary to the

 spirit, the goals and the intent of SPEC.

 The source code is provided to the user or company under the license

 agreement for the SPEC Benchmark Suite for this product.

 This program contains contributions from Iozone.org.

 Copyright (C) 2002 - 2020, Don Capps

SPECstorage® Solution 2020 Userôs Guide Version 1.2

23

 All rights reserved.

 This program contains a 64 - bit version of Mersen ne Twister pseudorandom

 number generator.

 Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura

 All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, are permitted provided tha t the following conditions

 are met:

 1. Redistributions of source code must retain the above copyright

 notices, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyrig ht

 notices, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

 3. The names of its contributors may not be used to endorse or

 promote prod ucts derived from this software without specific prior

 written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 LIMITED TO, THE IMPLIE D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

 DATA, OR PROFITS; OR BUSINES S INTERRUPTION) HOWEVER CAUSED AND ON ANY

 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Test run time = 300 seconds, Warmup = 300 seconds.

 Results directory: /home/capps/SPECstorage2020/bin/results

 Op latency reporting activated

 Importing workloads from storage2020.yml

[INFO][Thu Aug 13 12:42:43 2020]Exec validation successful

 SPECstorage(TM) Solution 2020 Release $Revision: 2462 $

 This product contains benchmarks acquired from several sources who

 understand and agr ee with SPEC's goal of creating fair and objective

 benchmarks to measure computer performance.

 This copyright notice is placed here only to protect SPEC in the

 event the source is misused in any manner that is contrary to the

 spirit, t he goals and the intent of SPEC.

 The source code is provided to the user or company under the license

 agreement for the SPEC Benchmark Suite for this product.

 This program contains contributions from Iozone.org.

 Copyright (C) 2002 - 2020, Don Capps

 All rights reserved.

 This program contains a 64 - bit version of Mersen ne Twister pseudorandom

 number generator.

 Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura

 All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, are permitted provided tha t the following conditions

 are met:

SPECstorage® Solution 2020 Userôs Guide Version 1.2

24

 1. Redistributions of source code must retain the above copyright

 notices, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyrig ht

 notices, this list of conditions and the following disclaimer in

 the documentation and/or other materials provided with the

 distribution.

 3. The names of its contributors may not be used to endorse or

 promote prod ucts derived from this software without specific prior

 written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

 LIMITED TO, THE IMPLIE D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

 DATA, OR PROFITS; OR BUSINES S INTERRUPTION) HOWEVER CAUSED AND ON ANY

 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Test run time = 300 seconds, Warmup = 300 seconds.

 Results directory: /home/capps/SPECstorage2020/bin/results

 Op latency reporting activated

 Importing workloads from storage2020.yml

2020 - 08- 13 12:42:43.692: Prime : Starting tests...

2020 - 08- 13 12:42:43.695: Prime : Launching 1 nodeManager processes.

2020 - 08- 13 12:42:43.695: Prime : Starting test nodeManager: 0 Host: centos 1804m1

2020 - 08- 13 12:42:49.898: Prime : Version check successful: $Revision: 2462 $

2020 - 08- 13 12:42:49.910: Prime : Waiting for each NodeManager to spawn client processes

2020 - 08- 13 12:42:52.227: Prime : Starting INIT phase

2020 - 08- 13 12:42:52.230: Prime : Sending Init to NodeManager 0

2020 - 08- 13 12:42:52.230: Prime : Waiting to finish initialization.

2020 - 08- 13 12:43:20.233: Prime : Init 10 percent complete from client 0

2020 - 08- 13 12:44:24.461: Prime : Init 30 percent complete from client 4

2020 - 08- 13 12:45:15.246: Prime : Init heartbeat __/ \ _/ \ __ client 0

2020 - 08- 13 12:45:31.010: Prime : Init 40 percent complete from client 4

2020 - 08- 13 12:46:06.872: Prime : Init 60 percent complete from client 1

2020 - 08- 13 12:46:15.246: Prime : Init heartbeat __/ \ _/ \ __ client 0

2020 - 08- 13 12:46:37.182: Prime : Init 80 percent complete from client 2

2020 - 08- 13 12:46:53.446: Prime : Init 90 percent complete from client 1

2020 - 08- 13 12:46:57.472: Prime : Initialization finished

2020 - 08- 13 12:46:57.474: Prime : Sending INIT results to NodeManager 0

2020 - 08- 13 12:46:57.567: Prime : Starting WARM phase

2020 - 08- 13 12:46:57.569: Prime : Sending warmup to NodeManager 0

2020 - 08- 13 12:46:57.569: Prime : Waiting for WARMUP phase to finish

2020 - 08- 13 12:47:55.648: Prime : Warm - up 20 percent complete from client 0

2020 - 08- 13 12:48:55.648: Prime : Warm - up 40 percent complete from client 3

2020 - 08- 13 12:49:15.288: Prime : Warm heartbeat client 0: 99.520 Ops/sec

2020 - 08- 13 12:49:25.659: Prime : Warm - up 50 percent complete from client 2

2020 - 08- 13 12:49:55.657: Prime : Warm - up 60 percent complete from client 4

2020 - 08- 13 12:50:15.347: Prime : Warm heartbeat client 4: 99.576 Ops/sec

2020 - 08- 13 12:50:25.678: Prime : Warm - up 70 percent complete from client 4

2020 - 08- 13 12:50:55.658: Prime : Warm - up 80 perce nt complete from client 0

2020 - 08- 13 12:51:15.310: Prime : Warm heartbeat client 3: 99.983 Ops/sec

2020 - 08- 13 12:51:25.677: Prime : Warm - up 90 percent complete from client 2

2020 - 08- 13 12:51:58.648: Prime : Starting RUN phase

202 0- 08- 13 12:51:58.649: Prime : Waiting for RUN phase to finish

2020 - 08- 13 12:52:26.529: Prime : Run 10 percent complete from client 2

2020 - 08- 13 12:52:56.930: Prime : Run 20 percent complete from client 3

2020 - 08- 13 12:53:27.069: Prime : Run 30 percent complete from client 2

2020 - 08- 13 12:53:57.629: Prime : Run 40 percent complete from client 1

2020 - 08- 13 12:54:27.740: Prime : Run 50 percent complete from client 3

2020 - 08- 13 12:54:57.899: Prime : Run 60 percent complete from client 4

2020 - 08- 13 12:55:28.099: Prime : Run 70 percent complete from client 4

2020 - 08- 13 12:56:26.619: Prime : Run 90 percent complete from client 4

SPECstorage® Solution 2020 Userôs Guide Version 1.2

25

2020 - 08- 13 12:56:57.079: Prime : Run 100 percent complete from client 1

2020 - 08- 13 12:56:57.649: Prime : Tests finished

2020 - 08- 13 12:56:57.650: Prime : Sending Asking results to NodeManager 0

 --

 Overall average latency 0.451 Milli - seconds

 Overall SPECstorage(TM) Solution 2020 500.017 Ops/sec

 Overall Read_throughput ~ 3227.734 Kbytes/sec

 Overall Write_throughput ~ 837.597 Kbytes/sec

 Overall throughput ~ 4065.331 Kbytes/sec

 Total file space initialized ~ 4800000 Mbytes

 --

 Workload MD5

 SWBUILD 0xfb8c79f3ac48f9c99f453c482e0c5442

 VDA1 0x9cbfa68f9db422f6e02bc223beb7147c

 VDA2 0xc65b6fbf99d4ae7ac2a049d14992765d

 EDA_FRONTEND 0x5fdd3373676e6463 e84f44935ac8c9a9

 EDA_BACKEND 0x2286a2138b5b0a1b36b022e64bda0b72

 AI_SF 0xf51719f24e46718977a87336e15d2119

 AI_TF 0xa181505bbf17e674e3b880de5c1ded38

 AI_TR 0x771bc069d10527f982be855e6f3b1d66

 AI_CP 0x7851f91ddf3e9b83d4cbf074cde9498e

 NGS 0x62bc6fc32ba443fc84da7c426268bbbb

 Registered Finger Print 2881026523

 --

 Latency Bands:

 Band 1: 20us:1758 40us:4914 60us:1549 80us:545 100us:529

 Band 2: 200us:2028 400us:61516 600us:35832 800us:13264 1ms:5908

 Band 3: 2ms:5618 4ms:682 6ms:13 8ms:5 10ms:1

 Band 4: 12ms:4 14ms:1 16ms:1 18ms:3 20ms:1

 Band 5: 40ms:1 60ms:0 80ms:0 100ms:0

 Band 6: 200ms:0 400ms:0 600ms:0 800ms:0 1s:0

 Band 7: 2s:0 4s:0 6s:0 8s:0 10s:0

 Band 8: 20s:0 40s:0 60s:0 80s:0 120s:0

 Band 9: 120+s:0

 --

2020 - 08- 13 12:56:57.701: Prime : Client results ready

2020 - 08- 13 12:56:57.702: Prime : Sending shutdown to NodeManager 0

2020 - 08- 13 12:56:57.703: Prime : Shutting down

2020 - 08- 13 12:56:57.703: Prime : Closing sockets

2020 - 08- 13 12:56:57.703: Prime : Closing keepalive socket s

2020 - 08- 13 12:56:57.703: Prime : Closing file handles

2020 - 08- 13 12:56:57.703: Prime : Freeing memory

netmist completed successfully, summarizing.

Reminder: The benchmark run may take many hours to complete depending upon the requested load and how many

data points were requested. Also, some failures may take more than an hour to manifest.

5 Submission and Review Process

The SPECstorage Solution 2020 benchmark release includes a tool for collecting benchmark results in a format that
can be submitted by email to the SPECstorage Solution 2020 results processing facility at SPEC. This facility will
automatically process these results and distribute them to the SPEC Storage subcommittee for review. This section

describes how you can use these tools to generate a file for each result that you wish to submit to SPEC. It also
describes the review process that occurs once the results are submitted. At this point, it is expected that you have
become familiar with the SPECstorage Solution 2020 Run and Reporting Rules. See the SPECstorage Solution 2020

Run and Reporting Rules documentation that is included in the distribution.

5.1 Creating Reports

Once a benchmark run is completed, the configuration file, results file and additional information are combined into
a submission file that is used for submitting runs to SPEC for review using the SpecReport command. Descriptions
of the fields that need to be filled out in the submission file are included in Section 6.1 in the SPECstorage Solution

SPECstorage® Solution 2020 Userôs Guide Version 1.2

26

2020 Run and Reporting Rules. This same submission file can be used to generate reports in the form presented on

the SPEC web site using the SpecReport command. Each command is documented below.

$ python SpecReport - h

Usage: python SpecReport [options]

Command Line Option Description Required/Optional

[-i <file>] or

[--submission-file=<file>]

Specify XML submission file Required

[-r <file>] or

[--rc-file=<file>]

Specify RC file Required for initial

package creation

[-s <suffix>] or

[--suffix=<suffix>]

Suffix used in log and summary files, similar to

SM2020 Python script

Required for initial

package creation

[-p <prefix>] or

[--prefix=<prefix>]

Prefix common to all submission files that get
created. Default during initial submission package
creation: storage2020-YYYY mmdd-HHMM. This

parameter is required for renaming existing

submissions.

Optional

[-u] or

[--update]

Update an existing submission. This option gets
the prefix from the submission file (-i <file>)
filename. The RC file, suffix, and results directory

flags will be ignored. Use with -p <prefix> for a

renamed and updated version of a submission.

Optional

[-d <dir>] or

[--results-dir=<dir>]

Results directory, default is ñresultsò in the current

working directory.
Optional

[-o <file>] or

[--output=<dir>]

Output ZIP archive for full disclosure. Optional

[-a <file1,file2,...>] or

[--

attachments=<file1,file2,...>]

List of extra files to attach to the submission (e.g.

client/mountpoint file)
Optional

[--validate-only] Validate the submission without creating the full

disclosure package.
Optional

[-h] Show usage info. Optional

5.1.1 Creating the Submission Package

To create a submission file one must first create an XML document based on the submission_template.xml example
found in the base directory. The template document has the correct XML structure expected by SpecReport. Valid
entries for each field can be found in the SPECstorage Solution 2020 Run and Reporting Rules. Edit a copy of the

template and fill in each field according to the run rules with specific information pertaining to the SUT.

SPECstorage® Solution 2020 Userôs Guide Version 1.2

27

Once the XML submission document is complete a formal submission package can be created with SpecReport. The
tool has 3 required arguments: the RC file, the XML submission file, and the suffix used during the test, the same

suffix used with SM2020 Python script. To test the submission files for correctness, issue the command

$ python 3 SpecReport - r <RC file> - i <XML file> - s <suffix> -- validate - only

The tool will check for the existence of all the necessary files and check the format of the XML document. If the
command returns without reporting any errors, repeat the command without the ñ--validate-onlyò flag to create the
submission package. The package will be a zip archive containing the following files: The RC file, the run summary

files, the submission file, an HTML version of the report, a text version of the report, a SUB version of the report,

and any configuration diagrams.

The syntax for updating an existing set of submission files is

$ py thon 3 SpecRepor t - u - i <XML file>

5.2 Submitting Results

Once you have generated a submission file as described in the Creating the Submission Package section above, you
may submit your run for review by the SPEC Storage subcommittee by emailing the ZIP file to

substorage solut io n2020 @spec.org . Upon receipt, the SPEC results processing facility will parse the

submission file and validate the formats. If the check passes, an email reply is returned to the sender including a
submission number assigned to the result. This submission number is used to track the result during the review and
publishing process. If there are any formatting errors, the parser will respond with a failure message indicating
where in the file the parsing failed. You may then either correct the error and resubmit or contact the SPEC office

for further assistance.

Every results submission goes through a minimum two-week review process, starting on a scheduled SPEC Storage
sub-committee conference call. During the review, members of the committee may contact the submitter and request
additional information or clarification of the submission. Once the result has been reviewed and accepted by the

committee, it is displayed on the SPEC web site at https://www.spec.org/.

6 Workload Definitions

The following sections summarize the important characteristics of each workload available in the SPECstorage
Solution 2020 benchmark. For a complete and definitive definition of each workload please refer to the

storage2020.yml file in the distribution.

Some benchmarks are a composite of two or more subcomponent workloads. There are global parameters per

workload that apply to all subcomponents. If there are multiple subcomponents to a benchmark, then the global
parameters are shown at the ñBenchmark_nameò level in the storage2020.yml file structure and apply to the entire

workload.

6.1 Software Build (SWBUILD) Benchmark

6.1.1 SWBUILD Workload Description

The software build type workload is a classic meta-data intensive build workload. This workload was derived from
analysis of software builds, and traces collected on systems in the software build arena. Conceptually, these tests are
similar to running a UNIX ómakeô against several tens of thousands of files. The file attributes are checked

(metadata operations) and if necessary, the file is read, compiled, then data is written back out to storage.

The business metric for the SWBUILD benchmark is BUILDS.

https://www.spec.org/

SPECstorage® Solution 2020 Userôs Guide Version 1.2

28

6.1.2 SWBUILD Workload Definition

6.2 Video Data Acquisition (VDA) Benchmark

6.2.1 VDA Workload Description

The workload generally simulates applications that store data acquired from a temporally volatile source (e.g.
surveillance cameras). A stream refers to an instance of the application storing data from a single source (e.g. one
video feed). The storage admin is concerned primarily about maintaining a minimum fixed bit rate per stream and

SWBUILD

Operation % Operation % Option Value Option Value

read 0 read file 6 write commit % 33 background 0

mmap read 0 rand read 0 % direct 0 sharemode 0

write 0 write file 7 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notification 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 1

mkdir 1 rmdir 0 release version 3 fadvise seq % 0

readdir 2 create 1 fadvise rand % 0 fadvise don't need % 0

unlink 2 unlink2 0 Option Value Option Value

stat 70 access 6 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 5 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 10 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 0 dedup within % 0

Procs 5 Dirs per proc 50 dedup across % 0 dedup group count 1

Oprate per proc 100 Files per dir 100 dedup granule size 4096 dedup gran rep limit 100

Avg file size 16 KiB compress % 80 comp granule size 8192

Threshold % Threshold Value cipher flag 0 pattern version 2

proc oprate 75 proc latency 0

global oprate 95 global latency 0

workload variance 0 Dedicated subdir 0

Warmup secs 300 Metric BUILDS

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs
Fi

le
 O

p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

M
is

ce
ll
an

e
o
u
s

G
lo

b
al

P
ar

am
e
te

rs

SWBUILD Part 2

Slot Start End % Slot Start End %

0 1 511 1 0 1 511 5

1 512 1023 5 1 512 1023 3

2 1024 2047 7 2 1024 2047 10

3 2048 4095 7 3 2048 4095 15

4 4096 8191 45 4 4096 8191 14

5 8192 16383 13 5 8192 16383 7

6 16384 32767 3 6 16384 32767 6

7 32768 65535 2 7 32768 65535 4

8 65536 131072 17 8 65536 131072 36

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorage® Solution 2020 Userôs Guide Version 1.2

29

secondarily about maintaining the fidelity of the stream. The goal of the storage admin is to provide as many

simultaneous streams as possible while meeting the bit rate and fidelity constraints.

The business metric for the VDA benchmark is STREAMS. The benchmark consists of two subcomponents: VDA1
(data stream) and VDA2 (companion applications). Each stream corresponds to a roughly 36 Mib/s bit rate, which is

in the upper range of high definition video.

6.2.2 VDA1 Workload Definition (subcomponent)

VDA1

Operation % Operation % Option Value Option Value

read 0 read file 0 write commit % 5 background 0

mmap read 0 rand read 0 % direct 0 sharemode 0

write 100 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notification 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 1

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 0 fadvise rand % 0 fadvise don't need % 0

unlink 0 unlink2 0 Option Value Option Value

stat 0 access 0 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 0 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 0 dedup within % 0

Procs 1 Dirs per proc 1 dedup across % 0 dedup group count 1

Oprate per proc 9 Files per dir 1 dedup granule size 4096 dedup gran rep limit 100

Avg file size 1 GiB compress % 0 comp granule size 8192

Threshold % Threshold Value cipher flag 0 pattern version 2

proc oprate 75 proc latency 0

global oprate 95 global latency 0

workload variance 5 Dedicated subdir 0

Warmup secs 300 Metric STREAMS

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs
Fi

le
 O

p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

M
is

ce
ll
an

e
o
u
s

G
lo

b
al

P
ar

am
e
te

rs

VDA1 Part 2

Slot Start End % Slot Start End %

0 65536 65536 15 0 32768 32768 5

1 131072 131072 10 1 65536 65536 10

2 262144 262144 20 2 131072 131072 10

3 524288 524288 35 3 262144 262144 25

4 1048576 1048576 20 4 524288 524288 25

5 0 0 0 5 1048576 1048576 25

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorage® Solution 2020 Userôs Guide Version 1.2

30

6.2.3 VDA2 Workload Definition (subcomponent)

6.3 Electronic Design Automation (EDA_BLENDED) Benchmark

6.3.1 EDA_BLENDED Workload Description

This workload represents the typical behavior of a mixture of EDA applications. EDA applications represent
software tools and workflows for designing semiconductor chips. Describes dozen of software tools used to design a
chip from specification to fabrication. Represent very compute-heavy processes with high concurrency. Storage is
often the performance bottleneck. The benchmark comprise of large numbers of small files with a low percent of
large files. Mixed random and sequential IO of metadata operations representing two high level design phases:

Frontend design and Backend design. The complete workload is a mixture of two subcomponents: the
EDA_FRONTEND and EDA_BACKEND workloads. The EDA_FRONTEND workload is the EDA frontend

VDA2

Operation % Operation % Option Value Option Value

read 5 read file 0 write commit % 0 background 0

mmap read 0 rand read 84 % direct 0 sharemode 0

write 0 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notification 0 init rate speed 0

rmw 2 append 0 LRU 1 init read flag 1

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 3 create 1 fadvise rand % 0 fadvise don't need % 0

unlink 1 unlink2 0 Option Value Option Value

stat 2 access 2 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 0 align 0

Parameter Value Parameter Value Option Value Option Value

Procs 1 Dirs per proc 1 dedup % 0 dedup within % 0

Oprate per proc 1 Files per dir 1 dedup across % 0 dedup group count 1

Avg file size 1 GiB dedup granule size 4096 dedup gran rep limit 100

compress % 0 comp granule size 8192

cipher flag 0 pattern version 2
A

cc
e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs

M
is

ce
ll
an

e
o
u
s

Fi
le

 O
p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

VDA2 Part 2

Slot Start End % Slot Start End %

0 65536 65536 15 0 32768 32768 5

1 131072 131072 10 1 65536 65536 10

2 262144 262144 20 2 131072 131072 10

3 524288 524288 35 3 262144 262144 25

4 1048576 1048576 20 4 524288 524288 25

5 0 0 0 5 1048576 1048576 25

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorage® Solution 2020 Userôs Guide Version 1.2

31

processing applications, and EDA_BACKEND represents the EDA backend applications that generate the final

output files. The business metric for the EDA_BLENDED benchmark is JOBS

6.3.2 EDA_FRONTEND Workload Definition (subcomponent)

EDA_FRONTEND

Operation % Operation % Option Value Option Value

read 0 read file 7 write commit % 15 background 0

mmap read 0 rand read 8 % direct 0 sharemode 0

write 0 write file 10 % osync 0 uniform size dist 0

mmap write 0 rand write 15 % notificat ion 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 1 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 2 fadvise rand % 0 fadvise don't need % 0

unlink 1 unlink2 1 Option Value Option Value

stat 39 access 15 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 1 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 50 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 50 dedup within % 0

Procs 3 Dirs per proc 10 dedup across % 0 dedup group count 1

Oprate per proc 100 Files per dir 10 dedup granule size 4096 dedup gran rep limit 100

Avg file size 16 KiB compress % 50 comp granule size 8192

Threshold % Threshold Value cipher flag 0 pattern version 2

proc oprate 75 proc latency 0

global oprate 95 global latency 0

workload variance 5 Dedicated subdir 0

Warmup secs 300 Metric JOBS

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs
Fi

le
 O

p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

M
is

ce
ll
an

e
o
u
s

G
lo

b
al

P
ar

am
e
te

rs

EDA_FRONTEND Part Two

Slot Start End % Slot Start End %

0 1 511 4 0 1 511 25

1 2048 4095 2 1 512 1023 10

2 4096 8191 43 2 1024 2047 15

3 8192 16383 30 3 2048 4095 18

4 16384 32767 21 4 4096 8191 27

5 0 0 0 5 8292 16383 3

6 0 0 0 6 16384 32767 2

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorage® Solution 2020 Userôs Guide Version 1.2

32

6.3.3 EDA_BACKEND Workload Definition (subcomponent)

6.4 AI_IMAGE (AI_IMAGE) Benchmark

6.4.1 AI_IMAGE Workload Description

This workload is representative of AI Tensorflow image processing environments and is expected to be popular as
this market continues to expand. The traces used for the basis were collected from Nvidia DGX based systems

running COCO, Resnet50, and CityScape processing.

There are four subcomponents that make up the aggregate AI workload. The first two are the Data Preparation

Phase, the second two make up the Training Phase:

EDA_BACKEND

Operation % Operation % Option Value Option Value

read 50 read file 0 write commit % 15 background 0

mmap read 0 rand read 0 % direct 50 sharemode 0

write 50 write file 0 % osync 5 uniform size dist 0

mmap write 0 rand write 0 % notificat ion 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 0 fadvise rand % 0 fadvise don't need % 0

unlink 0 unlink2 0 Option Value Option Value

stat 0 access 0 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 50 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 40 dedup within % 0

Procs 2 Dirs per proc 5 dedup across % 0 dedup group count 1

Oprate per proc 75 Files per dir 10 dedup granule size 4096 dedup gran rep limit 100

Avg file size 10 MiB compress % 20 comp granule size 8192

cipher flag 0 pattern version 2

Fi
le

 O
p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s
M

is
ce

ll
an

e
o
u
s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs

EDA_BACKEND Part Two

Slot Start End % Slot Start End %

0 32768 65535 49 0 32768 65535 45

1 65536 65536 51 1 65536 131072 55

2 0 0 0 2 0 0 0

3 0 0 0 3 0 0 0

4 0 0 0 4 0 0 0

5 0 0 0 5 0 0 0

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorage® Solution 2020 Userôs Guide Version 1.2

33

¶ AI_SF: small (image) file ingest

¶ AI_TF: tensor flow record creation

¶ AI_TR: training consumption of tensor flow records

¶ AI_CP: Represents the checkpointing functionality and may occur infrequently, if at all, during a
typical run.

The business metric for the AI_IMAGE benchmark is JOBS.

6.4.2 AI_SF Workload Definition (subcomponent)

AI_SF

Operation % Operation % Option Value Option Value

read 37 read file 0 write commit % 0 background 0

mmap read 0 rand read 0 % direct 0 sharemode 0

write 0 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notificat ion 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 0 fadvise rand % 0 fadvise don't need % 0

unlink 0 unlink2 0 Option Value Option Value

stat 56 access 7 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 10 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 2 dedup within % 0

Procs 4 Dirs per proc 3 dedup across % 0 dedup group count 1

Oprate per proc 100 Files per dir 200 dedup granule size 4096 dedup gran rep limit 100

Avg file size 1 MiB compress % 2 comp granule size 8192

Threshold % Threshold Value cipher flag 0 pattern version 2

proc oprate 75 proc latency 0

global oprate 95 global latency 0

workload variance 5 Dedicated subdir 1

Warmup secs 900 Metric JOBS

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs
Fi

le
 O

p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

M
is

ce
ll
an

e
o
u
s

G
lo

b
al

P
ar

am
e
te

rs

AI_SF Part 2

Slot Start End % Slot Start End %

0 1 65536 5 0 262144 262144 100

1 262144 262144 95 1 0 0 0

2 0 0 0 2 0 0 0

3 0 0 0 3 0 0 0

4 0 0 0 4 0 0 0

5 0 0 0 5 0 0 0

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorageÈ2020 Userôs Guide Version 1.2

34

6.4.3 AI_TF Workload Definition (subcomponent)

AI_TF

Operation % Operation % Option Value Option Value

read 0 read file 0 write commit % 30 background 0

mmap read 0 rand read 0 % direct 0 sharemode 0

write 100 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notificat ion 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 0 fadvise rand % 0 fadvise don't need % 0

unlink 0 unlink2 0 Option Value Option Value

stat 0 access 0 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 0 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 2 dedup within % 0

Procs 2 Dirs per proc 2 dedup across % 0 dedup group count 1

Oprate per proc 2 Files per dir 10 dedup granule size 4096 dedup gran rep limit 100

Avg file size 140 MiB compress % 2 comp granule size 8192

cipher flag 0 pattern version 2

Fi
le

 O
p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

M
is

ce
ll
an

e
o
u
s

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs

AI_TF Part 2

Slot Start End % Slot Start End %

0 262144 262144 100 0 10240 24576 20

1 0 0 0 1 32768 32768 20

2 0 0 0 2 65536 65536 20

3 0 0 0 3 131072 131072 5

4 0 0 0 4 200704 200704 20

5 0 0 0 5 262144 262144 5

6 0 0 0 6 1048576 1048576 5

7 0 0 0 7 2097152 2621440 5

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorageÈ2020 Userôs Guide Version 1.2

35

6.4.4 AI_TR Workload Definition (subcomponent)

AI_TR

Operation % Operation % Option Value Option Value

read 95 read file 0 write commit % 0 background 0

mmap read 0 rand read 0 % direct 0 sharemode 0

write 0 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notificat ion 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 0 fadvise rand % 0 fadvise don't need % 0

unlink 0 unlink2 0 Option Value Option Value

stat 5 access 0 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 0 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 2 dedup within % 0

Procs 10 Dirs per proc 2 dedup across % 0 dedup group count 1

Oprate per proc 3 Files per dir 10 dedup granule size 4096 dedup gran rep limit 100

Avg file size 140 MiB compress % 2 comp granule size 8192

cipher flag 0 pattern version 2

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs

M
is

ce
ll
an

e
o
u
s

Fi
le

 O
p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

AI_TR Part 2

Slot Start End % Slot Start End %

0 2097152 2097152 100 0 262144 262144 100

1 0 0 0 1 0 0 0

2 0 0 0 2 0 0 0

3 0 0 0 3 0 0 0

4 0 0 0 4 0 0 0

5 0 0 0 5 0 0 0

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorageÈ2020 Userôs Guide Version 1.2

36

6.4.5 AI_CP Workload Definition (subcomponent)

6.5 Genomics (GENOMICS) Benchmark

6.5.1 Genomics Workload Description

The Genomics workload models the entire pipeline of the Genomics workflow. The traces used to construct this
workload came from commercial and research facilities that perform genetic analysis. The I/O behavior was
captured and is synthesized by the benchmark. The data has been sanitized so that it does not contain any of the

original genome data. The business metric for GENOMICS benchmark is JOBS.

AI_CP

Operation % Operation % Option Value Option Value

read 0 read file 0 write commit % 30 background 0

mmap read 0 rand read 0 % direct 0 sharemode 0

write 100 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 0 % notificat ion 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 0 rmdir 0 release version 3 fadvise seq % 0

readdir 0 create 0 fadvise rand % 0 fadvise don't need % 0

unlink 0 unlink2 0 Option Value Option Value

stat 5 access 0 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 0 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 10 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 0 dedup within % 0

Procs 1 Dirs per proc 1 dedup across % 0 dedup group count 1

Oprate per proc 1 Files per dir 1 dedup granule size 4096 dedup gran rep limit 100

Avg file size 30 MiB compress % 0 comp granule size 8192

cipher flag 0 pattern version 2

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs

M
is

ce
ll
an

e
o
u
s

Fi
le

 O
p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

AI_CP Part 2

Slot Start End % Slot Start End %

0 1048576 1048756 100 0 1 511 80

1 0 0 0 1 2097152 2097152 20

2 0 0 0 2 0 0 0

3 0 0 0 3 0 0 0

4 0 0 0 4 0 0 0

5 0 0 0 5 0 0 0

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorageÈ2020 Userôs Guide Version 1.2

37

6.5.2 GENOMICS Workload Definition

GENOMICS

Operation % Operation % Option Value Option Value

read 70 read file 0 write commit % 0 background 0

mmap read 0 rand read 2 % direct 0 sharemode 0

write 8 write file 0 % osync 0 uniform size dist 0

mmap write 0 rand write 1 % notification 0 init rate speed 0

rmw 0 append 0 LRU 1 init read flag 0

mkdir 0 rmdir 0 release version 3 fadvise seq % 20

readdir 0 create 1 fadvise rand % 0 fadvise don't need % 100

unlink 1 unlink2 0 Option Value Option Value

stat 12 access 4 rand dist behavior 0 % per spot 0

rename 0 copyfile 0 min acc per spot 0 access mult spot 5

lock 0 chmod 1 affinity % 0 spot shape 0

statfs 0 pathconf 0 geometric % 50 align 0

trunc 0 neg_stat 0 Option Value Option Value

Parameter Value Parameter Value dedup % 0 dedup within % 0

Procs 4 Dirs per proc 2 dedup across % 0 dedup group count 1

Oprate per proc 250 Files per dir 25 dedup granule size 4096 dedup gran rep limit 100

Avg file size 1613 KiB compress % 0 comp granule size 8192

Threshold % Threshold Value cipher flag 0 pattern version 2

proc oprate 75 proc latency 0

global oprate 95 global latency 0

workload variance 5 Dedicated subdir 0

Warmup secs 300 Metric JOBS

G
lo

b
al

P
ar

am
e
te

rs

A
cc

e
ss

 P
at

te
rn

s
C
o
n
te

n
t
P
at

te
rn

s

Ex
e
cu

ti
o
n

P
ar

am
e
te

rs
Fi

le
 O

p
e
ra

ti
o
n
 D

is
tr

ib
u
ti

o
n

M
is

ce
ll
an

e
o
u
s

SPECstorageÈ2020 Userôs Guide Version 1.2

38

7 FAQ

7.1 SPECstorage Solution 2020 Benchmark Press Release

Question 1: What is the SPECstorage Solution 2020 benchmark and how does it compare to other storage

 solution benchmarks?

Answer: The SPECstorage Solution 2020 benchmark is the latest version of the Standard Performance
Evaluation Corp.'s benchmark that measures a storage solution throughput and response time.

It differs from other file server benchmarks in that it provides a standardized method for
comparing performance across different vendor platforms. The benchmark was written to be
solution independent and vendor-neutral. Results are validated through peer review before

publication on SPEC's public website: https://www.spec.org/storage

GENOMICS Part 2

Slot Start End % Slot Start End %

0 1 4095 1 0 1 2048 5

1 4096 4096 2 1 2049 8192 4

2 8192 65536 1 2 8193 131072 4

3 131072 131072 96 3 524288 524288 87

4 0 0 0 4 0 0 0

5 0 0 0 5 0 0 0

6 0 0 0 6 0 0 0

7 0 0 0 7 0 0 0

8 0 0 0 8 0 0 0

9 0 0 0 9 0 0 0

10 0 0 0 10 0 0 0

11 0 0 0 11 0 0 0

12 0 0 0 12 0 0 0

13 0 0 0 13 0 0 0

14 0 0 0 14 0 0 0

15 0 0 0 15 0 0 0

Slot Start End %

0 1 8191 38

1 8192 131071 43

2 131072 1048575 9

3 1048576 10485760 9

4 104857600 104857600 1

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

15 0 0 0

F
il
e
 S

iz
e
 D

is
ti

b
ut

io
n

W
ri

te
 T

ra
n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

R
e
ad

 T
ra

n
sf

e
r
Si

ze
 D

is
tr

ib
u
ti

o
n

SPECstorageÈ2020 Userôs Guide Version 1.2

39

Question 2: What improvements have been made to the SPECstorage Solution 2020 benchmark?
Answer: See the ñWhatôs New in SPECstorage Solution 2020?ò document included with the benchmark

 or on the SPECstorage Solution 2020 website: https://www.spec.org/storage/

Question 3: How were the SPECstorage Solution 2020 workloads determined?
Answer: The SPECstorage Solution 2020 workloads are based on system call and network traces collected
 from real environments and input from domain experts and published documentation of the

 real-world implementation of the application types being simulated.

Question 4: What are the metrics for the SPECstorage Solution 2020 benchmark?
Answer: The SPECstorage Solution 2020 benchmark has multiple performance measurement metrics.

 Please refer to the table below:

¶ SWBUILD = BUILDS

¶ VDA = STREAMS

¶ EDA_BLENDED = JOBS

¶ AI_IMAGE = JOBS

¶ GENOMICS = JOBS

Question 5: What is the correlation between the SPECstorage Solution 2020 benchmark and the TPC
 (Transaction Processing Council) and SPC (Storage Performance Council) benchmarks?
Answer: There is no correlation; the benchmarks present very different workloads on the solutions under

 test and measure different aspects of solution performance.

Question 6: Is the SPECstorage Solution 2020 benchmark a CPU-intensive or I/O-intensive benchmark?
Answer: The SPECstorage Solution 2020 benchmark is an application-level benchmark that heavily
 exercises CPU, mass storage and network components. The greatest emphasis is on I/O, especially

 as it relates to operating and file system software. To obtain the best performance for a system
 running the SPECstorage Solution 2020 benchmark, the vendor will typically add additional
 hardware ï such as memory, disk controllers, disks, network controllers and buffer/file/page
 cache ï as needed in order to help alleviate I/O bottlenecks and to ensure that server CPUs are

 used fully.

Question 7: For what computing environment is the SPECstorage Solution 2020 benchmark designed?
Answer: The benchmark was developed for load-generating clients running UNIX or Windows.
 The SPECstorage Solution 2020 benchmark can be used to evaluate the performance of any

 storage solution, regardless of the underlying environment.

Question 8: Can users measure performance for workloads other than the ones provided within the
 SPECstorage Solution 2020 benchmark?
Answer: Yes, users can measure their own workloads by making changes to the SPECstorage Solution
 2020 benchmark workload objects file.(storage2020.yml) The SPECstorage Solution 2020
 User's Guide details how this can be done. Workloads created by users cannot, however, be

 compared with SPECstorage Solution 2020 results, nor can they be published in any form, as

 specified within the SPECstorage Solution 2020 license.

Question 9: To what extent is the server's measured performance within the SPECstorage Solution 2020
 benchmark affected by the client's performance?

Answer: SPEC has written the SPECstorage Solution 2020 benchmark to include the effect of client
 performance on SPECstorage Solution 2020 results. This is a storage solution benchmark, not a
 component level benchmark. The aggregate data set sweeps a range that covers the in cache and

 out of cache cases for the solution. This provides coverage for the real world situations.

https://www.spec.org/storage/

SPECstorageÈ2020 Userôs Guide Version 1.2

40

Question 10: How does SPEC validate numbers that it publishes?
Answer: Results published on the SPEC Web site have been reviewed by SPEC members for compliance
 with the SPECstorage Solution 2020 Run and Reporting Rules, but there is no monitoring beyond
 that compliance check. The vendors that performed the tests and submitted the performance

 numbers have sole responsibility for the results. SPEC is not responsible for any measurement or

 publication errors.

Question 11: Are the reported SPECstorage Solution 2020 configurations typical of systems sold by vendors?
Answer: Yes and no. They are similar to large server configurations, but the workload is heavier than that

 found on smaller server configurations. SPEC has learned from experience that today's heavy
 workload is tomorrow's light workload. For some vendors, the configurations are typical of what
 they see in real customer environments, particularly those incorporating high-end servers. For

 other vendors, SPECstorage Solution 2020 configurations might not be typical.

Question 12: Do the SPECstorage Solution 2020 Run and Reporting Rules allow results for a clustered server?
Answer: Yes, cluster configurations are allowed as long as they conform to the SPECstorage Solution 2020

 Run and Reporting Rules.

Question 13: What resources are needed to run the SPECstorage Solution 2020 benchmark?

Answer: In addition to a server, a test bed includes several clients and an appropriate number of networks.
 Ideally, the server should have enough memory, disks and network hardware to saturate the CPU.
 The test bed requires at least one network. Examples of typical load-generating configurations can

 be found on the SPEC Web site: https://www.spec.org/storage/

Question 14: What is the estimated time needed to set up and run the SPECstorage Solution 2020 benchmark?
Answer: Hardware setup and software installation time depend on the size of the server and the complexity
 of the test beds. Many servers require large and complex test beds. The SPECstorage Solution
 2020 software installs relatively quickly. A SPECstorage Solution 2020 submission from a vendor
 includes at least 10 data points, with each data point taking from ~30 to ~90 minutes to complete.
 The performance of the storage solution is a factor in the time it takes to setup and run each load

 point.

Question 15: What shared resources does the SPECstorage Solution 2020 benchmark use that might limit
 performance?
Answer: Shared resources that might limit performance include CPU, memory, disk controllers, disks,

 network controllers, network concentrators, network switches, clients, etc.

Question 16: Does the SPECstorage Solution 2020 benchmark permit tuning parameters?
Answer: When submitting results for SPEC review, vendors are required to supply a description of all
 tuning parameters for all cases where non-default values were used for all components in the SUT.

 This information is displayed in the appropriate sections in published SPECstorage Solution

 2020 results.

Question 17: Can a RAM disk be used within a SPECstorage Solution 2020 configuration?
Answer: SPEC enforces strict storage rules for stability. Generally, RAM disks do not meet these rules

 since they often cannot survive cascading failure-recovery requirements unless an uninterruptible

 power supply (UPS) with long survival times is used.

Question 18: How will the choice of networks affect SPECstorage Solution 2020 results?
Answer: Different link types and even different implementations of the same link type might affect the

 measured performance -- for better or worse -- of a particular server. Consequently, the results

 measured by clients in these situations might vary as well.

SPECstorageÈ2020 Userôs Guide Version 1.2

41

Question 19: Is the SPECstorage Solution 2020 benchmark scalable with respect to CPU, cache, memory, disks,
 controllers and faster transport media?

Answer: Yes the benchmark is scalable as users migrate to faster technologies.

Question 20: What is the price of a SPECstorage Solution 2020 license and when will it be available?
Answer: The SPECstorage Solution 2020 benchmark is available now from the SPEC download site for
 US$2,000. A discounted price is available for non-profit and academic licensees.

 Contact the SPEC office: (See www.spec.org for any updates)

Standard Performance Evaluation Corporation (SPEC)
7001 Heritage Village Plaza
Suite 225
Gainesville, VA 20155
Phone: 1-703-579-8460

Fax: 1-703-579-8463

E-Mail: info@spec.org

Question 21: Can users get help in understanding how to run the SPECstorage Solution 2020 benchmark?
Answer: The majority of questions should be answered in the SPECstorage Solution 2020 User's Guide.

 There is also useful information on the SPEC Web site: https://www.spec.org/storage/

Question 22: Do I need to measure every workload?

Answer : No. Each workload has a separate metric that can be published independently.

Question 23: How do I get started running the SPECstorage Solution 2020 benchmark?
Answer: Please read the SPECstorage Solution 2020 User's Guide and SPECstorage Solution 2020 Run

 and Reporting Rules in their entirety.

Question 24: I am running into problems setting up and running the benchmark. What can I do?
Answer: The most common problem is usually that file server file systems are not being correctly
 mounted on the clients. Most of the problems relating to the SPECstorage Solution 2020
 benchmark can be resolved by referring to appropriate sections of the User's Guide, including
 this FAQ. Other common problems include: hosts file/DNS configuration, firewalls not being
 disabled, password-less SSH not configured, or attempting to run outside a domain in a Windows

 environment.

Question 25: I have read the SPECstorage Solution 2020 User's Guide. But I am still running into problems.
 What can I do next?
Answer: Looking at the sfslog.* and the sfsc* files can give you an idea as to what may have gone wrong.

 Inspecting the client logs, on each client, in /tmp/, c:\tmp\, or at NETMIST_LOGS on each load
 generator can also provide more details on errors. And, as a last resort, you can contact SPEC at
 support@spec.org. It is assumed that such calls/emails are from people who have read the
 SPECstorage Solution 2020 User's Guide completely and have met all the prerequisites for setting

 up and running the benchmark.

Question 26: How does one abort a run?
Answer : The benchmark can be aborted by simply stopping the SM2020 Python script.
 (Typically Control-C) This will terminate all SPECstorage Solution 2020 related processes on all
 clients and on the prime client.

Question 27: For a valid run, which parameters are required to be unchanged?
Answer: Information is provided in the SPECstorage Solution 2020 Run and Reporting Rules and in the

http://www.spec.org/
mailto:info@spec.org
https://www.spec.org/storage/
mailto:support@spec.org

SPECstorageÈ2020 Userôs Guide Version 1.2

42

 sfs_rc file, and this is enforced by the benchmark. If invalid parameter values are selected, the

 benchmark reports an invalid run.

Question 28: Is there a quick way to debug a testbed?
Answer: Read the SPECstorage Solution 2020 User's Guide, ping the server from the client, ping from the
 prime client to the other clients and vice versa, validate that the paths in
 CLIENT_MOUNTPOINTS exist on all load generators and are writeable, validate password-less
 SSH works from the prime client to all load generators, run the benchmark with one client and one

 file system.

7.2 Tuning the Solution

Question 29: What are a reasonable set of parameters for running the benchmark?

Answer: Study existing results pages with configuration information similar to your system configuration.

Question 30: How do I increase the performance of our solution?
Answer: One may need to add, as necessary, one or more of the following: processors, memory, disks,

 controllers, etc.

7.3 Submission of Results

Question 31: We have a valid set of results. How do we submit these results to SPEC?
Answer: See the Submission and Review Process section above. The SpecReport submission tool

 documentation is in that section.

8 Trademarks

IBM and AIX are trademarks of International Business Machines Corporation in the United States, other countries,

or both.

Iozone is a trademark of Iozone.org, in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

BSD is a trademark of Berkeley University in the United States.

MacOS is a trademark of Apple, Inc. in the United States, other countries, or both.

MicrosoftI, Windows, WindowsI(R), Visual Studio, and the Windows logo are trademarks of Microsoft Corporation

in the United States, other countries, or both.

Solaris is a trademark of Oracle, in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Cent OS is a trademark of RedHat, in the United States, other countries, or both.

SPEC and SPECstorage are registered trademarks of the Standard Performance Evaluation Corporation

Other company, product, or service names may be trademarks or service marks of others.

SPECstorageÈ2020 Userôs Guide Version 1.2

43

9 Research corner

9.1 Custom changes to storage2020.yml file to add new workloads.

Each workload has a description in the storage2020.yml file. One may modify, or add new, definitions to this file

for custom workload creation.

9.2 Custom workload objects

The SPECstorage Solution 2020 benchmark is capable of running user defined workloads. These are not publishable
via SPEC; however, consumers may find it useful to create a model of their specific application load and then to be

able to run the benchmark while presenting their specific applicationôs workload.

9.3 Statistics Collection via PDSM

Within the SPECstorage(TM) 2020 benchmark there is an internal mechanism for collecting statistical information
while the benchmark is running. This internal subsystem is called Portable Distributed Shared Memory (PDSM).
This is an internal mechanism that synthesizes a distributed shared memory mechanism that is used for collecting

statistical information from all of the clients, and client processes, throughout the data center that are participating in
the benchmark. This mechanism can also be used for dynamic updates to a running benchmark. This document
covers the statistical collection mechanism. The dynamic control will be covered by a separate document, in the

future.

9.3.1 Configuring PDSM

In the SPECstorage 2020 benchmark there is a configuration file that contains information about the setup of the

PDSM mechanism. The entries in the sfs_rc file are:

PDSM_MODE of 0 create shared PDSM log file with overwrites.

PDSM_MODE of 1 create shared PDSM log file with open append.

PDSM_MODE=

PDSM_INTERVAL # Interval in seconds

PDSM_INTERVAL=

<PLATFORM>_PDSM_LOG filename Full pathname to the PDSM log file. Used to

log the details of ôvery proc's activities.

SPECstorageÈ2020 Userôs Guide Version 1.2

44

UNIX_PDSM_LOG=

WINDOWS_PDSM_LOG=

<PLATFORM>_PDSM_CONTROL filename Full pathname to the PDSM control file. Used

for dynamically changing workloads.

UNIX_PDSM_CONTROL=

WINDOWS_PDSM_CONTROL=

As the benchmark is running, statistical information will be written to the PDSM_LOG file. Each of the
participating clients mounts the /mnt/logdir directory from a shared filesystem, such as NFS or SMB. Updates to this

log file are made by all of the processes running on all of the clients participating in the benchmark.

¶ PDSM_MODE=integer value
Specifies the access behavior of the clients. PDSM_MODE=0 tells the client processes to update only
their entries in the log file and to overwrite their entry every PDSM_INTERVAL. This presents a
single view of all of the statistical data that is updating every PDSM_INTERVAL seconds. If the
PDSM_MODE is 1, then each client process will append new statistical data to the end of the file. This

provides data over a continuum of time.

¶ PDSM_INTERVAL = integer value
The duration of time in seconds between sample collection, that is, how often the client processes will
update the log.

¶ UNIX_PDSM_LOG=filename
The path to the Unix PDSM_LOG file. Example: /tmp/pdsm.log

¶ WINDOWS_PDSM_LOG= filename
The path to the Windows PDSM log file. Example: C:\tmp\pdsm.log

¶ UNIX_ PDSM_CONTROL=filename
The Unix control file used for dynamic manipulation of the benchmark while it is running.

¶ WINDOWS_PDSM_CONTROL=filename
The Windows control file used for dynamic manipulation of the benchmark while it is running, used

for dynamically changing workloads.

The PDSM control file can be placed in a unified shared name space or defined to be client local.

9.3.2 Configuring Carbon

9.3.2.1 The pipeline of processing

 In order to visualize the statistical data collected above one needs to have a mechanism to transport and display

this information. The pipeline of processing is:

¶ PDSM Collection to a log file

¶ Reading, transposing, and sending the statistical data to a ñCarbonò server

¶ Using a ñGraphiteò server to compose the graphical representations

¶ Using a web browser to view the graphical visualizations.

9.3.2.2 Prerequisite environment

The first step was accomplished by the method described earlier. The next step involves sending data to a Carbon

server. This will require setting up and installing:

¶ Dockers

See: https://docs.docker.com/get-started/

¶ Carbon & Graphite servers

See: https://graphite.readthedocs.io/en/latest/install.html

https://docs.docker.com/get-started/
https://graphite.readthedocs.io/en/latest/install.html

SPECstorageÈ2020 Userôs Guide Version 1.2

45

Once these services are setup and running then the process to visualize begins with using the ñpump_carbonò utility,

provided with the SPECstorage 2020 benchmark in the bin directory.

The pump_carbon utility reads the PDSM_LOG file, transposes this into a Carbon format, and sends the information

to the Carbon server.

pump_carbon:
 -h............ Help screen

 -f............ pdsm_log_file_name
 -k............ Ignore STOP. Used for multiple load point runs with PDSM_MODE=1
 -s............ Carbon server
 -i............ Interval in seconds
 -t............ One pass flag. Use with append mode collection.
 -v............ Display version information.

Example: pump_carbon -f /mnt/logdir/pdsm.log -s hostname_of_carboI_server -i 1

The command line above tells Pump_carbon to read the PDSM log file and send the data to the Carbon server every

1 seconds.

The Carbon server will connect the arriving information and store it in a Whisper database on the Carbon server.
The information is encoded by pump_carbon and sent to the Carbon server in the format described below and to this

socket for processing by a "Carbon" server that is listening on its port (2003).

Pump_carbon encodi ng

String . Integer . WorkLoadName . ResultString Float Timestamp

------------------- --

%s.%d.%s.oprate %10.6f %lld (hostname, client_id, workload_name, op_rate, TimeStamp)

%s.%d.%s.read_latency %10.6f %lld (hostname, client_id, workload_name, read_latenc y, TimeStamp)

%s.%d.%s.read_file_latency %10.6f %lld (hostname, client_id, workload_name, read_file_latency, TimeStamp)

%s.%d.%s.read_rand_latency %10.6f %lld (hostname, client_id, workload_name, read_rand_latency, TimeStamp)

%s.%d.%s.mmap_read_latency %10 .6f %lld (hostname, client_id, workload_name, mmap_read_latency, TimeStamp)

%s.%d.%s.mmap_write_latency %10.6f %lld (hostname, client_id, workload_name, mmap_write_latency, TimeStamp)

%s.%d.%s.write_latency %10.6f %lld (hostname, client_id, workload_name, write_latency, TimeStamp)

%s.%d.%s.write_file_latency %10.6f %lld (hostname, client_id, workload_name, write_file_latency, TimeStamp)

%s.%d.%s.write_rand_latency %10.6f %lld (hostname, client_id, workload_name, write_rand_latency, TimeStamp)

%s.%d.%s.rmw_l atency %10.6f %lld (hostname, client_id, workload_name, rmw_latency, TimeStamp)

%s.%d.%s.mkdir_latency %10.6f %lld (hostname, client_id, workload_name, mkdir_latency, TimeStamp)

%s.%d.%s.rmdir_latency %10.6f %lld (hostname, client_id, workload_name, rmdir_ latency, TimeStamp)

%s.%d.%s.create_latency %10.6f %lld (hostname, client_id, workload_name, create_latency, TimeStamp)

%s.%d.%s.unlink_latency %10.6f %lld (hostname, client_id, workload_name, unlink_latency, TimeStamp)

%s.%d.%s.unlink2_latency %10.6f %lld (hostname, client_id, workload_name, unlink2_latency, TimeStamp)

%s.%d.%s.append_latency %10.6f %lld (hostname, client_id, workload_name, append_latency, TimeStamp)

%s.%d.%s.lock_latency %10.6f %lld (hostname, client_id, workload_name, lock_latency, TimeS tamp)

%s.%d.%s.access_latency %10.6f %lld (hostname, client_id, workload_name, access_latency, TimeStamp)

%s.%d.%s.chmod_latency %10.6f %lld (hostname, client_id, workload_name, chmod_latency, TimeStamp)

%s.%d.%s.readdir_latency, %10.6f %lld (hostname, c lient_id, workload_name, readdir_latency, TimeStamp)

%s.%d.%s.stat_latency, %10.6f, %lld (hostname, client_id, workload_name, stat_latency, TimeStamp)

%s.%d.%s. neg_ stat_latency, %10.6f, %lld (hostname, client_id, workload_name, neg_ stat_latency, TimeStamp)

%s.%d.%s.copyfile_latency %10.6f %lld (hostname, client_id, workload_name, copyfile_latency, TimeStamp)

%s.%d.%s.rename_latency %10.6f %lld (hostname, client_id, workload_name, rename_latency, TimeStamp)

%s.%d.%s.statfs_latency %10.6f %lld (hostname, client_id, workload_name, statfs_latency, TimeStamp)

%s.%d.%s.pathconf_latency %10.6f %lld (hostname, client_id, workload_name, pathconf_latency, TimeStamp)

%s.%d.%s.trunc_latency %10.6f %lld (hostname, client_id, workload_name, trunc_latency, TimeStamp)

Examples:

Hostname.client_id.Workload.oprate value Seconds past Epoch

------------ ---

Centos7.0.VDI.oprate 25.0100 00 28723421

Centos7.1.VDI.read_rand_latency 0.001000 28723422

SPECstorageÈ2020 Userôs Guide Version 1.2

46

9.3.3 Visualizing the data

To view the graphs, one will open a web browser and enter the URL for the Graphite server. (Same host as the

Carbon server) e.g. http://carbonserver or http://graphiteserver

At the Graphite top level: http://graphiteserver switch to DashBoard view and one will see a screen similar to what

is below. In this example ñcentos1804M1ò is one of the clients that was running the benchmark and sending

statistical data.

http://carbonserver/
http://graphiteserver/
http://graphiteserver/

SPECstorageÈ2020 Userôs Guide Version 1.2

47

Select the centos1804M1 hostname and one will be presented with the next level; client_id within the SPECstorage

processes: (Each process has a unique Client_ID, starting with zero)

Selecting client_id of zero, one now sees there are statistics for the SWBUILD workload:

SPECstorageÈ2020 Userôs Guide Version 1.2

48

Selecting the SWBUILD workload, one can now see the statistics collected for this client process:

Clicking on the various statistics will produce graphs in the bottom window. Be sure you select a relative, or

absolute, time frame that covers when the samples were collected.

