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Abstract—The Community Atmospheric Model (CAM) is a what the performance might be if the application codes were
global atmosphere model developed for the weather and climate modified to exploit the unique features of the system being
research communities. CAM also serves as the atmospheric g\ 4 ated. Unfortunately, it is rarely feasible within the time

component of the Community Climate System Model (CCSM). . L e
As a community model, it is important that CAM run efficiently frame of an early evaluation to make significant modifications

on different architectures, and that it be easily ported to and op- t0 the applications codes in order to verify these predictions.
timized on new platforms. The current version of CAM contains We have also participated in the development of some

a number of performance portability features - compile-time or  of the application codes in our benchmark suites, helping
runtime parameters that can be used to optimize performance for introduce “performance portability” features into the codes.

a given platform, problem or processor count. The large number Th feat ile-ti ti tuni i
of tuning options can make benchmarking an arduous task. The '1ES€ Tealures are compiie-ime or runtime tuning options

paper describes these options and how optimization is managedthat can be used to quickly optimize a code on a new
to make it feasible for evaluation of early systems. The paper platform, including, for example, support for different vendor-
also describes some of the performance sensitivities of selectedsupplied math libraries or messaging layers and interfaces
platforms to the different tuning options. for adding support for new ones. While not perfect, these
performance portable codes make it easier to perform a fair
I. INTRODUCTION (e:valuatior_w. T:is papﬁr d_eslslril?jeT ocr:lzl\s/luch agpr:icati_or! code,dthe
. . .. Community Atmospheric Mode , and how it is use
Oak Ridge National Laboratory (ORNL) computer scientist our ben)éhmarkir?g ( )
have been evaluating “early systems” since the mid 1980s [ '‘CAM is a global atmosphere model developed at the Na-
'[10I]’d['12], [11]}[ [13], 'EIM]t’h[lZ]C’;I[?I'!" [2((:)], [2)2]5 1[3C2:]’ [3;‘2]_;_3 tional Science Foundation’s National Center for Atmospheric
Inciuding, most recently, the X, Lray , ray 'Research (NCAR) with contributions from researchers funded
and Cray X1. Early systems are low serial number or pre- the Department of Energy (DOE) and by the National
commepcal releas.e Versions Of computer systems, often deA\}{éronautics and Space Administration (NASA) [2], [3]. CAM
ered with unqpt|m|zed or missing system sqftware. The 99" ysed in both weather and climate research. In particular,
of the evaluation is to comment on the promise of the syst M serves as the atmospheric component of the Community
in a fast, fair, and open way. Conducting evaluations that imate System Model (CCSM) [1], [4]. As a community
both fast and .fair Is difficult i'.q practice, and compromi;e;hodel' it is important that CAM run'eﬁi(;iently on different
are often required. However, if a new architecture provld.(?:l?chitectures, and that it be easily ported to and optimized on
a novel feature that standard benchmarks do not examipg, platforms. CAM contains a number of compile-time and
simply running the standard benchmarks provides no 'ns'% time parameters that can be used to optimize performance

into the utility of that feature. Therefore, we develop and u & a given platform, problem or processor count. When
custom benchmarks, as appropriate, as well as use St‘f:mlaerrqchmarking with éAM it is important that the code be

benchmarks. optimized to approximately the same level as for a production

We typically take a hierarchical approach, using microkeﬁm but no more. For example, production usage requires

nel m r m performan kernel mpar . .
els to measure subsystem performance, kemels to co It the results be invariant to the number of processors

programming paradigms and to measure whole system perEé'ed. This “reproducibility” requirement can disallow some

mance, and compact or full application codes to estimate t gmpiler optimizations

performance in terms meaningful to the application users. The

crok | and K | it d to hel derstand A consortium of DOE-funded mathematicians and computer
MICrokernel and kernel resufts are used to nelp understan g&?entists, including researchers at ORNL, began working with

full application performance. They are also used to estimemae Community Climate Model (CCM) [19], [23], the prede-

The work of this author was sponsored by the Office of Mathematicdf€SSOr tO CAM’ in the early 199051_ developing a massively
Information, and Computational Sciences, Office of Science, U.S. Departmgrarallel version (CCM/MP-2D) in which many of the perfor-

of Energy under Contract No. DE-AC05-000R22725 with UT-Batelle, LLCmance portability techniques later implemented in CAM were
Accordingly, the U.S. Government retains a nonexclusive, royalty-free license . d 161 171, 81, A f thi ff d | d
to publish or reproduce the published form of this contribution, or allow othefavestigated [6], [7], [8]. As part of this effort we develope

to do so, for U.S. Government purposes. a parallel algorithm testbed code called the Parallel Spectral
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Transform Shallow Water Model (PSTSWM) [31], [35], [36].A. General

PSTSWM was our first attempt at developing a performanceNOng with the usual tuning option of compiler flags, CAM
portable benchmark. PSTSWM was later included in PARKgas 5 number of code fragments, delimitedcpp directives,
BENCH [21]. The importance of PSTSWM is that it includegnat are enabled only for certain systems. For example, there
a superset of the tuning options supported in CCM/MP-2R¢e 3 few routines for which we were unable to develop a
and PSTSWM can be used to identify a subset of candidaf@gle version that runs well on both vector and nonvector
options, minimizing the number of required CCM/MP-2Dsystemscpp is used to choose either the vectorizable or the
tuning runs. While less important for CAM, as PSTSWM igache-friendly versions of these routinepp is also used to

not as faithful a representation of the parallel algorithms {fhoose between math library routines with different calling
CAM, it is still used for this purpose. sequences, FET routines primarily.

B. Physics

The physics uses the same computational grid as the dy-

CAM is a mixed-mode parallel application code, usinl\%f:mics- All three dycores employ a tensor product longitude-
both the Message Passing Interface (MPI) [18] and Opennfiitude-vertical glon x nlat  x nver ) grid covering the
protocols [5]. CAM is characterized by two computationépher?- We refer to 3” grid points in th_'s three-dlmgnsmnal
phases: the dynamics, which advances the evolution equati@f§ With a given horizontal location, differing only in the
for the atmospheric flow, and the physics, which approximatégrtical coordinate, as aertical column or just column
subgrid phenomena such as precipitation processes, clodd¥ current physical parameterizations in CAM are based
long- and short-wave radiation, and turbulent mixing [3]. Th@n vertical columns, and physics computations at a given
approximations in the physics are referred to as the phy§mestep are independent between columns. The basic data
cal parameterizations. Control moves between the dynamgt&icture in the physics is thehunk an arbitrary collection of

and the physics at least once during each model simulatiégftical columns. Grid points in a chunk are referenced by
timestep. The number and order of these transitions depdiRfal column index ,vertical index ). A “chun-

on the numerical algorithm in the dynamics. ked” array is declared a@cols ,nver ,nchunks ) and the

CAM includes multipledynamical cores (dycorespne of 00P structure is
which is selected at compile-time. Three dycores are currenfly j=1,nchunks
supported: the spectral Eulerian solver from CCM [23], [27], do k=1,nver
a spectral semi-Lagrangian solver [29], and a finite volume  do i=1,ncols(j)
semi-Lagrangian solver [24]. The three dycores do not use the (physical parameterizations)
same computational grid. An explicit interface exists between  enddo
the dynamics and the physics, and the physics data structuregnddo
and parallelization strategies are independent from those in Heido
dynamics. A dynamics-physics coupler moves data between

data structures representing the dynamics state and the ph _
state.  ncols (j) is the number of columns allocated to chunk

II. COMMUNITY ATMOSPHERICMODEL

The development of CAM was (and continues to be) a large 7 .
community-wide effort. ORNL researchers are responsible for* Nchunks is the number of chunks;
many of the performance portability features in the spectral® PCOIS is the maximum number of columns allocated to
Eulerian and spectral semi-Lagrangian dycores, most ported a1 chunk (specified at compile time).
from CCM/MP-2D, and in the physics [33]. The finite volumelhus,pcols -nchunks > nlon -nlat for a tensor-product
dycore was originally developed at NASA, and most of the inlongitude-latitude grid, but there are no other assumptions
tial performance portability features were developed at NAS@Pout the composition of a chunk. In particular, the columns
Goddard and at Lawrence Livermore National Laboratory [259undled in a given chunk may not be geographically contigu-
[26]. However, many individuals from many organization§Us-
have contributed to the software engineering of CAM, notably The primary physics tuning options are as follows.
the CCSM Software Engineering Group at NCAR and David 1) The first option is the compile-time paramefmols .
Parks of NEC Solutions America, who is responsible for the  This determines the maximum number of columns

initial vectorization of many of the routines. assigned to a chunk. (Depending on the number of
processors and number of columnsols(j) can
be less thanpcols .) Large pcols generates long
I1l. PERFORMANCEPORTABILITY FEATURES inner loops, which improve vectorization. Smptiols

decreases the size of the basic computational unit, which

We cannot do justice in this paper to the large number of  improves cache locality, and increases the number of
tuning options currently supported in CAM. For more details, chunks. While increasing the number of chunks can in-

see [25], [26], [33]. Instead, we focus on those options that  crease loop overhead, it also exposes additional OpenMP
have proved most useful in recent benchmarking exercises. parallelism and may help in load balancing between
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2)

OpenMP threads. The specific value pfols will D. Finite Volume Dynamics

also determine the memory alignment of elements in the The finite volume dycore employs a two-dimensional block

chunked arrays, which has performance implications @zcomposition of the computational grid. There are two

most systems. computational phases in this dycore. In one, the longitude
The second option is the load-time specification @fnq |atitude dimensions are decomposed. In the other, the
the number of MPI processes and OpenMP threagl§ityde and vertical dimensions are decomposed. Interprocess
for a given total number of processors. The numb@ommunication is needed for remapping between the two
of OpenMP threads determines the number of chunigcompositions and for halo updates in the semi-Lagrangian
to create. The same number of chunks are (usually}vection scheme.

assigned to all threads spawned by a given MPI pro-The primary dynamics tuning options for this dycore are as

cess. Approximately the same number of columns afgljows.
assigned to these chunks, so each thread is also assignsfl The first option is the runtime specification of the virtual

approximately the same number of columns.

The third option is the runtime assignment of columns
to chunks. The time required to process a column is a
function of geographical location and simulation time,
and excellent static load balancing schemes are known.
However, the best load balancing scheme is at odds
with the domain decompositions utilized by the dycores
(described below), thus requiring significant interproces-
sor communication to implement. Four different load
balancing schemes are supported: balance load between
chunks assigned to the same MPI process (no interpro-
cess communication, load balancing only between local
OpenMP threads), between two MPI processes (only
pairwise interprocess communication required), between
MPI processes assigned to the same SMP node (only
intranode interprocess communication required), and the
best load balancing scheme (requiring all processes to
communicate with all other processes).

The fourth option is the runtime selection of commu-
nication protocol used to implement the interprocess
communication required by the load balancing scheme.
Possibilities include MPI collectives, 19 different MPI 4)
two-sided point-to-point implementations, an MPI one-
sided point-to-point implementation, and a Co-Array
Fortran one-sided point-to-point implementation.

3)

4)

C. Spectral Dynamics

The spectral dycores currently support only a one-
dimensional decomposition of the computational grid, over
latitude initially. OpenMP parallelism can be exploited to
employ more processors in the physics than in the dynam-
ics when there is insufficient MPI parallelism to achieve a
performance goal. Each call of the spectral dynamics moves
back and forth between the longitude-latitude-vertical grid
point space and the spectral coefficient space. The dependen-
cies in these transforms require changing the decomposition
from one-dimensional over latitude to one-dimensional over
longitude and back again. A halo update is also needed in
the semi-Lagrangian advection scheme [30], gather or
allgather collective communication operators are needed
to compute a number of diagnostic quantities. The primary
tuning option in the spectral dynamics is the choice of commu-
nication protocols for these interprocess communications. The
options are the same as for physics load balancing, described
earlier, but different choices can be made for the physics and
for the dynamics.

two-dimensional processor grid that defines the blocks for
the latitude-vertical domain decomposition. The second is
the runtime specification of the virtual two-dimensional
processor grid that defines the blocks for the longitude-
latitude domain decomposition. While independent, the
two choices should be considered together as they de-
termine the communication overhead when remapping
between decompositions. For example, it is generally best
to use the same number of processors to decompose the
latitude dimension in both decompositions. Note that a
one-dimensional decomposition over latitude is best for
small processor counts as it eliminates the need for a
remap.
The third option is the load-time specification of the
number of MPI processes and OpenMP threads for a
given total number of processors. As OpenMP and MPI
parallelism apply to the same loops in this dycore, the
optimum is a function of the OpenMP overhead and
the MPI communication overhead. The same settings
are used in both the physics and the dynamics, and the
performance impact in both will determine the optimum.
The fourth option is the communication protocol used for
the remap and halo update communications. The finite
volume dycore is built on top of a communication layer
called Pilgrim  [26], which supplies different options
than those in the spectral dynamics and in the physics.
Six options are supported: two MPI two-sided point-to-
point implementations using either

— temporary contiguous send and receive buffers, or

— sending from and receiving into MPI derived types,
and four MPI one-sided point-to-point implementations
using one of
mpi_puts between temporary contiguous buffers on
source and target,
direct mpiputs of contiguous segments into a tem-
porary contiguous window, with threading over the
segments,
mpi_puts of mpi derived types into a temporary
contiguous window, with threading over the target,
or
mpi_puts between mpi derived types at source and
target, with threading over the target
(Some versions dRilgrim  also support SHMEM [17],
and this has been introduced into the most recent version
of CAM.)
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V. TUNING one 2-link network adapter. Each processor is a 1.9 GHz
POWERS.

SGI Altix 3700 at ORNL: non-uniform memory ac-
cess (NUMA) shared memory system in which two 2-
processor SMPs are connected to fori@-arick, with an

SGI NUMAIink interconnect between the C-Bricks. Each
processor is a 1.5 GHz Itanium2. The ORNL system has
256 processors.

The goal of the CAM benchmarking is to generate perfor-
mance scaling curves as a function of processor count for one
or more dycores and for one or more problem specifications.
As the optimal tuning setings can vary with dycore, problem
specification, and processor count, the large number of tuning
options can make fair benchmarking an arduous task. Here we
describe our approach to tuning CAM when benchmarking.

First, we use performance data from representative kernels'he following experiments describe results for both
or from CAM on a small number of processors to reduce thbe spectral Eulerian and the finite volume dycores. For the
number of options that need to be examined when benchmaskectral dycore we used version 3.0.p1 of CAM, available from
ing. In particular, we identify appropriate compiler optionghttp://www.ccsm.ucar.edu/models/atm-cam/ :
math library routines, communication layer and communica&nd a problem with a horizontal grid of si266 x 128 and 26
tion protocols, and chunk siz@dols ). vertical levels. This is the same problem resolution and CAM

Second, we organize the benchmarking in such a way asdi¢core as used in the CCSM coupled climate model for the
prune the search tree when a given option has been showiforth IPCC (Intergovernmental Panel on Climate Change)
be uncompetitive. To eliminate start-up costs that would not B&sessments [22]. Because the spectral dycore supports only a
typical of production runs, we time the code when simu|atir@ne-dimensional decomposition over latitude, the number of
one, two, and three simulation days, taking differences MP! processes cannot be greater than 128 for this problem.
estimate seconds per day of simulation for longer runs. Whelewever more than 128 processors can be used if OpenMP
runtimes are small, we also verify these estimates with rupgrallelism is exploited.
for 30 simulation days. We use the one day runs to identify aFor the finite volume dycore we used version 3.1 of CAM,
few good choices of the candidate tuning options and restritailable from the same URL, and a problem with a horizontal
the longer runs to these near-optimal choices. We also ugél of size576 x 361 and 26 vertical levels. The finite volume
scaling data to identify when options stop being competitivycore requires that at least three latitudes and three vertical
and can be eliminated from further experiments. For exampleyels be assigned to each MPI process. For a one-dimensional
one-dimensional decompositions in the finite volume dynamidecomposition over latitude, this limits the number of MPI
are more efficient for small processor counts than the twprocesses to 120. For a two-dimensional decomposition, the
dimensional decompositions. Initial experiments are used ttaximum number of MPI processes increases to 960.
determine the point of crossover, and two-dimensional de-|n the rest of this section we describe some of the per-
compositions are used only for larger processor counts. Tfagmance sensitivities of the different platforms for these
search space pruning is applied to both the subset of optigéblems and dycores. Note that we do not have the data
identified in the first stage of the tuning and to the other, @gcessary to show how bad performance can be if poor choices
yet unexamined, options. are made. The goal of the methodology described earlier is to
identify poor choices quickly and eliminate them from further
testing. Even some of the data described below could have
been eliminated if we had been more careful when collecting

In this section we describe results from recent benchmarkidgta. We also do not show the sensitivities to compiler flags,
exercises, quantifying the importance of tuning. Data wet®mmunication protocol, or runtime environment variables
collected on the following systems. (such as, for example, the memory and task affinity flags

« Cray X1E cluster at ORNL: 256 4-processor symmetrien the IBM systems), which are some of the most important
multiprocessor (SMP) nodes. Each processor is a Mul@ptimizations, but are not unique to CAM.
Streaming Processor (MSP) comprised of 8 32-stageFigure 1 shows the impact gfcols on the performance
vector units running at 1130 MHz, 128 64-bit wide, 64ef the physics. The runtime for the physics for one simulation
element deep vector registers, and 4 scalar units runnitigy was measured for a variety of chunk sizes. These runtimes
at 565 MHz. were then normalized with respect to the runtime of the opti-

o Cray XT3 at ORNL: 5294 single processor nodes andraal pcols setting for each platform. The two graphs contain
custom interconnect. Each node is connected to a Cridne same data, but use different axes limits and scalings. As
Seastar router through Hypertransport, and the Seastxpected, the vector system prefers lagpols , while the
are interconnected in a 3D-torus topology. Each processmnvector systems prefer smaller values. Performance on all
is a 2.4 GHz AMD Opteron. of the nonvector systems is relatively insensitive to the exact

o IBM p690 cluster at ORNL: 27 32-processor p690 SMPcols value as long as the extremes, both small and large,
nodes and an HPS interconnect. Each node has two 2-lare avoided. The optimal value for each system is as follows:
network adapters. Each processor is a 1.3 GHz POWERA4for the Altix, 24 for the P690, 34 for the XT3, 80 for the

« IBM p575 cluster at the National Energy Research ScieR5-575, and 514 or 1026 for the X1. Note that performance
tific Computing Center (NERSC): 122 8-processor p578 degraded on many of the systems wipeols is a power
SMP nodes and an HPS interconnect. Each node haswo and large.

V. EXAMPLE RESULTS
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Figures 2 and 3 show the impact of different numbers; 15
of OpenMP threads per process as a function of the total
number of processors. The total runtime for one simulatio§ /
day was measured on the IBM p690 cluster for both thé /
spectral Eulerian and finite volume dycores. For the finite os /
volume dycore, results are shown for both a one-dimensional /
decomposition and a two-dimensional decomposition defined .
by a virtual processor grid of sizg”?/4) x 4, whereP is the 0 100 200 300 400 500 600 700
number of MPI processes. Performance is already optimized , processors
with respect to communication protocol, chunk size, and load Finite Volume Dycore: 2D (P/4)x4 decomp. ‘
. . . . . 1 thread —_—
balancing in these experiments. The runtime is used to calcu- 2 threads
late the computation rate in simulation years per wallclock ~2° [ 4!hreads —/
day. qu the_se ex_perlments the primary utility of OpenMP§ G
parallelism is to increase the total number of processors 2 /
that can be used. For experiments with the spectral Euleriah /
T . . [
dycore, utilizing fewer threads is generally faster for a giverg, 15
total number of processors. Exceptions occur when a particul§r /
MPI process count leads to an uncorrectable load imbalancg. 1
A similar result holds for the finite volume dycore and the”
two-dimensional decomposition. For the finite volume dycore os
and the one-dimensional decomposition, there is a crossover /
point beyond which it is faster to not increase the number of
MPI processes, utilizing more OpenMP threads instead. Note ~ ° 10 200 800 400 800 600 700

processors

that the one-dimensional decomposition achieves a high%rIGUREs: OpenMP experiments with finite volume dycore
computational rate than the two-dimensional decomposition, on IBM p690 cluster

up to 672 processors and for this problem size.
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to the two-dimensional decomposition results. Again, the two

" Cray X1E
ray . . . .
1D decomp. — two-dimensional decompositions demonstrate approximately
12 =™ (P/4)x4 2D decomp. ] the f
(P/7)x7 2D decomp. —e— same per ormance.
F//’\/ 10 decomp. . Figure 5 compares the performance of the different load
g e op decome 1 balancing schemes on the Cray XT3 and on the IBM p690
5 o e . cluster for the finite volume dycore. Performance is already
§ ’ / e do decome: | optimized with respect to communication protocol, chunk sizg,
s . domain decomposition, and number of OpenMP threads in
g / o these experiments. The graphs show the ratio of the runtime
& s for a given load balancing scheme to that of the minimum
/ L, runtime over all load balancing schemes for a given processor
2 f s /% count. On the p690 cluster, full load balancing is always best,
g.’f-»/ : but no load balancing is at most 8 percent slower. On the Cray
0 XT3, full load balancing is usually best, but pairwise exchange
0 200 400 600 800 1000 1200 . B .
Processors load balancing is never much worse. Here, no load balancing
18 ey XiE is as much as 12 percent slower.
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processors
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Figure 4 compares the performance of the one-dimensional
domain decomposition with two-dimensional domain decom- 11
positions defined by virtual processor grids of s{Zz&/4) x 4 Los
and (P/7) x 7, respectively, for the finite volume dycore. ' A
. . . . Q
Performance is already optimized with respect to commung 1.6
cation protocol, chunk size, load balancing, and number df \ \
OpenMP threads in these experiments. Results are presenged \ \ /\
for three systems: the Cray X1E, the Cray XT3, and the IBME 102 y -
p690 cluster. The computational rate for one simulation dag —
is plotted versus the number of processors. The two graphs
contain the same data, but use different axes scalings. For 0.98 -i8m psoo cluster
. . - no load balancing —_—
the two Cray systems the two-dimensional decompositions | pairwise exchange load balancing
full load balancing —

extend scalability and improve performance compared to the
one-dimensional decomposition when the one-dimensionsal

0 100 200 300

400 500

processors

600 700

decomposition employs more than approximately 70 MPI pro-
cesses to decompose the latitude dimension. This latitude pro-
cess limit also determines when th/7) x 7 two-dimensional We did not include a load balancing comparison for the Cray
domain decomposition begins to outperform fi4) x4 two- X1E as full load balancing is always significantly better and
dimensional domain decomposition. For smaller latitude prese did not collect the required data. While full load balancing
cess counts, the performance of the two-dimensional decomfmtypically best on these platforms, this is not true on all
sitions are approximately the same. Experiments on the Cralgtforms. In particular, systems for which interprocessor
systems did not use OpenMP parallelism. In contrast, OpenM&mmunication bandwidth is low compared to processor speed
parallelism was employed in the IBM p690 experimentsvill likely not find full load balancing useful.

OpenMP parallelism allows the number of MPI processes toThe final figure and tables are attempts to capture the impact
be kept no larger than 84 in the p690 cluster experiments, asfdall of the performance tuning options. Such a comparison
the one-dimensional decomposition results are always superdifficult in that it requires defining the “default” options.

FIGURE 5: Load balancing experiments
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. . MPI threads load improv. vs.
It is easy to make CAM run poorly on any given system, for . processed| per process| peols balance | CCM alg.
example, by settingcols inappropriately. Figure 6 compares [ 32 32 1 16 full 28%
optimal CAM performance for the spectral Eulerian dycore gg gg i %g pa}jﬂlhllise ggz//o
: : : u ()
with the per,formance when running CAM in the same way as 5o 128 1 16 Deinwise 2506
CCM, CAM’s predecessor, on the IBM p690 cluster and on the 160 40 4 24 full 21%
Cray X1E. INCCM modeeach latitude line (subset of vertical ;gé 14288 ‘21 ig pafir\ﬂ/ise i%)
. . . . _ u 0)
columns with a common latitude index) is a chuplcqﬁls = 320 40 8 32 none 48%
258), OpenMP is not enabled, and no load balancing is usef. 384 48 8 24 pairwise 62%
512 128 4 16 pairwise 91%
14 T
IBM p690 cluster TABLE |
optimized —_— OPTIMAL PERFORMANCESETTINGS FORIBM P690 QLUSTER FOR
12 ccmmode — SPECTRAL EULERIAN DYCORE
z
o 10
[}
o r"‘/ MPI threads load | improv. vs.
g 8 Proc. | processes| per process| pcols balance| CCM alg.
> /’ B 8 8 1 1026 full 8%
S 6 e 16 16 1 1026 full 19%
& /;/ 32 32 1 1026 full 16%
ER p 64 64 1 514 full 15%
@ 96 96 1 514 full 23%
[
N/ 128 | 128 1 258 | ful 17%
%,
7 TABLE II
0 OPTIMAL PERFORMANCESETTINGS FORCRAY X1E FOR SPECTRAL
0 100 200 300 400 500 600 EULERIAN DYCORE
Processors
30 ; ;
Cray X1E /
optimized ——
. 25 | CCMmode However, we do not expect OpenMP parallelism to increase
8 /-/ scalability much beyond 128 processors for this problem size.
g 2 For example, using 256 processors, say 128 MPI processes
g and 2 OpenMP threads per process, will halve the number of
S 15 columns per chunk to 128. This decreases the vector length
c . . . .
S of many loops in the physics to 128, which is half the vector
é 10 length of the X1E processor. Thus, while we would be using
@ / twice as many processors, the performance of each processor
5 % would be approximately halved in the physics.
There is no older version of CAM with the finite volume
0 dycore that can be used to define an experiment similar to
0 20 40 60 80 100 120 140

that described above, nor do we have sufficient performance
data for any default settings. Instead we simply report optimal
settings.

The optimal settings for the IBM p690 cluster for the finite

The optimal settings for the IBM p690 cluster are describaalume dycore are described in Table 3. In only one of the
in Table 1. The load balancing and chunk size optimizatioexamined cases did a two-dimensional decomposition (32x7
result in significant performance improvements. Both loadlith one thread) outperform a one-dimensional decomposition
balancing and increased serial performance due to the smallek2x1 with two threads), and then only slightly. Note that
chunk size contribute to the performance enhancement fbe optimal value ofpcols increases with the number of
small processor counts. For large processor counts, the srpenMP threads. The reason for this is not clear, but the
chunk sizes (16, 24, 32 vertical columns) increase the amoyetrformance impact was significant in some cases. Also note
of OpenMP parallelism available compared to 256 colunthat direct interprocessor communication between MPI derived
chunks, improving scalability compared to runs with the CCNypes was faster than copying into/out of temporary buffers.
settings. Note that full load balancing is not optimal in many The optimal settings for the Cray X1E for the finite volume
instances in these experiments. dycore are described in Table 4. For each experim@abis

The optimal settings for the Cray X1E are described walue was determined that would maximize the number of
Table 2. As performance for the vector length in CCM mode tolumns per chunk subject to the restriction tpabls <
close to optimal, the differences in performance are primarily)26 while also minimizing memory requirementgcpls
due to load balancing. OpenMP parallelism was not exploitéarger than 1026 sometimes causes memory problems.) A
in these runs. Partly this is because OpenMP has not besibset of the values was then selected that provided reasonable
tested extensively in the current port of CAM to the X1Ecoverage, simply to limit the number of executables gener-

Processors
FIGURE 6: Performance comparison between optimal and
default settings for spectral Eulerian dycore.
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processor| threads load derived processor| threads load derived
Proc. grid per process| pcols balance| types Proc. grid per process| pcols balance| types
32 32x1 1 16 full yes 32 32x1 1 40 full yes
64 64x1 1 16 full yes 48 48x1 1 40 full no
96 48x1 2 16 full yes 64 64x1 1 40 full yes
128 64x1 2 16 full yes 96 24x4 1 40 full yes
224 32x7 1 24 full yes 128 32x4 1 40 full yes
256 64x1 4 24 full yes 192 48x4 1 40 full yes
448 56x1 8 32 full yes 256 64x4 1 40 full yes
512 64x1 8 32 full yes 336 48x7 1 40 full no
672 84x1 8 32 full yes 448 64x7 1 40 full yes
TABLE Il 672 96x7 1 40 full yes
OPTIMAL PERFORMANCESETTINGS FORIBM P690CLUSTER FORFINITE TABLE V
VOLUME DYCORE OPTIMAL PERFORMANCESETTINGS FORCRAY XT3 FORFINITE VOLUME
DYCORE
processor| threads load derived
Proc. grid per process| pcols balance| types
2 1 aro | M no but we feel that the improved fairness in the performance data
64 64x1 1 870 full no justifies the additional cost.
96 24x4 1 870 full no On the systems utilized in this paper, OpenMP and the two-
isg igﬁ i g;g ;3“ 23 dimensional domain decompositions were primarily useful for
256 64x4 1 870 full no extending the number of processors that could be employed. In
336 48x7 1 630 ]{u:: no contrast, load balancing and chunk size were important opti-
448 64x7 1 570 u no At ; ; ;
672 967 1 330 full no mizations for any processor coun_t. While not me_nt|oned in the
paper, communication protocol did not play an important role
o S TABLE 'VC in the sense that the obvious choices (using MPI collectives
PTIMAL PERFORMANCE ETTINDGS FORCRAY X1E FORFINITE VOLUME for collective operations and MEBBENDRECYV for point-to-
YCORE

point operations) performed well. The one exception was that
sending from and receving into MPI derived data types per-
formed poorly on the Cray X1E. The insensitivity to the choice
af communciation protocol is due to the high performance
the interconnects and messaging libraries available on
r@?— target systems. However, communication protocol options
have been very important performance enhancers in the past,
we expect them to continue to be important performance
gortability options in the future.

ated for the benchmarking. As mentioned earlier, the on
dimensional decomposition is superior until the number
processes applied to the latitude dimension exceeds app
imately 70. A similar rule holds when comparing the two
dimensional decompositions. For example, for 336 process
the 48 x 7 virtual processor grid delivers better performanc
than the84 x 4 processor grid. On the X1E sending from or

receiving into MPI derived data types degrades performance. VII. ACKNOWLEDGEMENTS
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