The Memory Behavior of Data Structures in C SPEC CPU2000 Berfunarks

Kartik K. Agaram
Calvin Lin

Stephen W. Keckler
Kathryn S. McKinley

Department of Computer Sciences
The University of Texas at Austin

ABSTRACT

it with a conventional code profile to determine the domiresit
cess patterns for each data structure. Applying our methggo

As a result of application and computer system design trends to 12 of the 15 C SPEC CPU2000 benchmarks, we demonstrate
the memory system continues to exert a dominant influence onthat our approach is able to partition seemingly irregutaoreas

program performance. While understanding how complex ap-

plications use complex computer systems is important td-har
ware, software, and benchmark designers, this is a difftask.
This paper demonstrates a system called DTrack that previde
deeper insight into how an application uses the memory syste
DTrack classifies memory accesses on a per data structuis, bas
enabling analysis of the regularity and locality of thesegnam

patterns into streams that are more regular and easier &r-und
stand. Our characterization reveals important pattermisardis-
tribution of cache misses in the major data structures ajnarms,

and highlights unique behaviors in specific SPEC benchmarks
We demonstrate the usefulness of our tool by means of two case
studies, showing sophisticated design decisions that gatan
architect may face and the way that DTrack helps make these de

components. Applying the DTrack methodology to 12 C SPEC cisions.

CPU2000 benchmarks, we demonstrate that this classificatio
veals data structure interactions that remain obscurechwiia-
ditional aggregation-based analysis methods. Our chaaza-
tion reveals the degree of diversity in memory behavior gmnon

The remainder of this paper is organized as follows. Se@&ion
distinguishes our work from prior memory system analysisl-st
ies and tools. Section 3 describes our methodology, exptaim
mechanisms employed to minimize the invasiveness of thaiins

the benchmarks within this suite, and we discuss how these in mentation we add to the benchmarks, and quantitatively uneas

sights can be used by system and application designers teva&ch
high performance through memory system and compiler ineprov
ments.

1. Introduction

A computer system’s memory hierarchy has a substantiabtif n
dominant, effect on application performance. The impartaof

memory system behavior will continue to grow as the gap be-

both the invasiveness and the impact of our modificationsron s
ulation time. Section 4 presents experimental resultéligiting
the additional insight on dominanant access patterns ddige
our detailed statistics, and illustrating how this richtpre of ap-
plication behavior can be used from the perspective of a coenp
architect. Finally, Section 5 provides conclusions andigjints on
future work.

2. Related Work

tween memory speeds and processor speeds increases. 4n addi

tion, applications are continuing to grow in complexity, it

Conventional methodology for characterizing applicagian-

places additional burden on the memory system due to large orvolves either cache or timing simulation [1, 8, 15, 2]. Theesgh-

irregularly accessed data structures. Understanding ipplica-
tions use the memory system is important to at least thragogro
(1) system designers who can apply insights into memoresyst

nigues operate at the level of the application executablleonrt
recourse to the high-level structure of the program. As altes
their output is limited to aggregate statistics about haméwex-

usage to improve hardware and software memory optimization ecution, such as the mean number of instructions executed pe

techniques, (2) application writers who can understand theiv

clock cycle, miss-rates at the various cache hierarchiebssan-

program uses the memory system and optimize for better-local ilar hardware events. DTrack provides a technique to connect

ity, and (3) benchmark developers who want to ensure thatithe
verse patterns of behavior in realistic applications apeasented.

While many tools have been developed to analyze memory behav

ior[18, 9, 10, 11], none give insight into the behavior ofiindual
data structures within a program. This paper describesystes

these hardware events to high-level structures in the i
source code.

Tools have been created in the past to decompose application
memory performance by data structure, but they have thus far
been restricted to studying arrays. The original such ®bém-

- DTrack- which gathers memory system statistics on a per data Spy by Martonosi et al. [10] which operated on loop nests in Fo

structure basis, to help identify those data structureshidnee the
strongest influence on performance and to offer insight timédr
size and access regularity.

DTrack consists of a C-to-C compiler that automatically in-
struments variable allocations in programs and a detaitheithq
simulator that consumes this instrumentation. This coatinn
yields a tool that generates data profiles - detailed bremkslo
of cache misses by the different high-level data structimdke

source code. Given the data profile, we then manually combine

tran programs. Similarly, Lebeck et al. [9] present datacstr
ture and procedure level aggreagate miss information aast cl
sify misses as compulsory, capacity and conflict. While géhes
tools present several software optimizations for imprgwache
performance, they examine the behavior of an array within th
context of a single procedure. As a result, they do not perfor
cross data structure analysis, and do not consider theioext
whether data structures interfere with themselves or vitters.
McKinley and Temam analyze the complementary dimension

struct foo bar ;
void main () {

struct foo bar ;
asm ("mop") ;

c-breeze
void main () { —_—
f2 = malloc (struct foo) ;

} NAME = "f2" ;

PTR=12;
SIZE = sizeof (struct foo) ;
asm ("mop") ;

FILE.print ("bar", &bar, sizeof (bar)) ;

f2 = malloc (sizeof (struct foo)) ;

sim-alpha

CcC

if (inst == mop) {
addLayout () ;
}

Figure 1: DTrack, a tool for observing data structures irgpams

of inter-nest and intra-nest loop locality [11], but agagmsider
only arrays and aggregate information between loop nests. F
nally, the Cache Visualization Tool [18] demonstrates iheet
varying behavior of arrays as they march through the cachis. T
level of detail supports analyzing a single loop nest at &tim
whereas we analyze data structure phase behavior across muc
longer periods. Seidl and Zorn [14] use a technique simdar t
ours to partition the heap into segments based on objetitiiés,
without performing the more fine-grained analysis to sejatse
behavior of objects by data structure that we do. Finallyli@bi
etal. [3, 13] analyze compressed program traces, decontipase
into hot data streamsand use these hot data streams to drive lay-
out and prefetching optimizations. This approach of seagctor
access patterns across the different data structures iogaapn

is complementary to ours, which attempts to decomposea@ppli
tion access patterns by data structure. We believe our apipiie
more effective at providing intuitions about applicatioghlavior
that are useful to humans in different roles.

3. Methodology

This section describes our methodology for performing itketa
analyses of applications from a memory system perspediife.
describe techniques to map addresses to data structurés whi
minimizing the degree to which we perturb underlying apatlien
behavior. We also describe the machine configuration welateu

in our characterization, the simulation intervals we cleoand

the aggregate statistics for our benchmarks that can beadea
from conventional tools.

3.1. Mapping addresses to data structures

DTrack maps addresses to data structures by automatically i
serting instrumentation in the application to communi¢htead-
dress range corresponding to each variable to the simul@bar
challenge here is to keep the overhead due to the instrutienta
low and to minimize the perturbance to the application. Fegu
shows a schematic of our tool. First, we automatically insgnt
benchmark sources using an extension to the C-Breeze [6] C-t
C compiler. We then simulate them on a modified version of the
sim-alpha [5] timing simulator that simulates the configiara
shown in Figure 2, including a rambus memory model. For each
variable in the program, the compiler-generated instruat&m
stores the variable’s name and address at a designatetbiocat
memory and interrupts the simulator by means of a specialdgc

| Feature | Size/Value |

Data caches

DL1 cache 64 KB, blocksize 64 bytes, 2-way,
3 cycles

L2 cache 512 KB, blocksize 64 bytes,
direct-mapped, 12 cycles

TLBs 128 entries

Main memory

Peak bandwidth 1.6Gbytes/s

64 banks * 512 rows * 2KB/row
32 PRER + 24 ACT + 48 RD/WR

Rambus geometry
Access latency (cycles

+ queuing
Out-of-order Processor
Pipeline width 4
Int ALUs, multipliers 4,4
FP ALUs, multipliers 1,1

Tournament, 1 KB x 1 KB local,
4 KB global, 4 KB choice

Branch predictor

Figure 2: Details of the simulated Alpha 21264-like processd
memory hierarchy

(“mop” in Figure 1). On executing this instruction at runémnthe
simulator imports the information from this designatedilaan in
simulated memory. Since the simulator knows the extent cfiea
variable in the application at any time, it maps the addréss.ch
cache access to a specific variable. Classifying and asgjigaich
load and store to a specific variable slows the simulator doyvn
60% on average and 100% in the worst case.

We track both heap allocations and deallocations becagse th
same raw address could be allocated to different data stasct
at different times in a program’s execution. Since we cfgssi
heap allocations according to their static location in therse
code, we cannot distinguish between instances of a datzstey
such as two linked lists whose nodes are allocated at the same
line in the source. This issue is not a concern in studyingGhe
SPEC CPU2000 benchmarks because the major data structures
do not have multiple instances. Other languages and bemkhma
may require more elaborate heuristics. Global variableshan-
dled differently. Rather than communicate them individiuad
the simulator by the above method, the instrumentatiorewthe
names and extents of all global variables to a designatedriile
program initialization. Though the set of file writes is erpive,

Benchmark | IPC DL1 L2 structures. We simulate only one of them due to lack of sitrana
Miss-rate | Miss-rate time. As a result, while our results correctly reflect theonalata

164.9zip 1.39 23 3.9 structures irl81.mcf, they tend to under-estimate the importance

175.vpr 0.67 3.0 35.3 ofarcs.

176.gcc 1.15 3.2 104

177.mesa 1.06 0.9 234

179.art 0.23 14.8 74.9 4. Results

181.mcf 0.14 24.1 60.5)) i o

183.equake | 0.58 141 29.4 This section presents a detailed characterization of tlwveab

186.crafty 1.21 1.3 4.3 SPEC benchmarks using DTrack. We begin by studying basic

188.ammp | 0.57 10.0 45.0 data profiles generated by DTrack, and then explore two ways

197.parser | 0.97 3.6 21.5 that this new capability to visualize the behavior of diffet data

256.bzip2 1.16 21 32.6 structures can be used to help answer sophisticated anchiae

300.twolf | 0.51 9.5 26.9 questions.

Table 1: The benchmarks we use and their aggregate memory, 1 pata profiles and distributions
hierarchy behavior
DTrack generates data profiles. Figure 3 breaks down theeaggr
gate memory behavior of our applications — accesses and miss
rates at the DL1 and L2 — by the three data structures thaecaus
it is a one-time startup cost. Finally, stack variables aein- the most DL1 misses (DS1, DS2, DS3), the stack, and evegythin
strumented because the high frequency of scope changes woul else. Figure 3.a shows that the breakdown of accesses td_the D
raise the instrumentation overhead too much. Instead, @& tr (and therefore the rest of the memory hierarchy) variestiyrea
the stack as a single data structure and coalesce all asdeste across our applications. Whil&9.art and181.mcf have skewed
by a simple range test. Our results will show that misseséo th distributions, with 80% of all accesses coming from 2 datacst
stack are generally negligible. In combination these tiephes tures, 176.gcc and 186.crafty have extremely balanced distri-
to instrument the global segment, heap and stack limit theipe butions; no data structure contributes more than 2% of aeses
bance due to our instrumentation to less than 0.6% of theuimst Other applications lie between these extremes.

tion count across all benchmarks except16#.gzip, where the While accesses are often spread out, Figure 3.b shows that
instrumentation is 3.7% of the total instruction count heeaof misses tend to cluster. The top 5 data structures usualtyibote
frequent heap allocations in the inner loops. more than 90% of all DL1 misses. The exceptions Bf6.gcc,

186.crafty, and197.parser with a long tail of minor data struc-
tures that respectively end up accounting for 84%, 67% afél 78
of all cache misses. Among the other applications, the ntgta

This paper presents a characterization of 12 of the 15 C bench Structures end up partitioning cache misses among theesselv
marks in the SPEC CPU2000 benchmark suite. Table 1 lists & Variety of ways; the top data structure can contribute &weyes
some aggregate properties of the benchmarks we studydinglu ~ P&tween 20 and 80% of total cache misses. .
average instructions per cycle (IPC) and miss-rates ateted-| Comparing Figures 3.a and 3.b, we see th"’}t cgche misses
1 data (DL1) and level-2 (L2) caches. Our benchmarks range and accesses are poorly correlgted. A few apphcauong aqch
as300.twolf, from compute-boundl64.gzip) to memory-bound with only a few data structures, and misses tracking theidist
(181.mcf). We are unable to study the remaining 3 C benchmarks bution of accesses. However, the majority of applicatidmss
in the SPEC CPU2000 suite due to methodological difficulties & Well-understood pattern where a data structure receives m
253.perlbmk no longer builds on our Alpha platform with the lat- ~ accesses than another, yet accounts for fewer misses. tlousar
est version of libc, an@54.gap and 255.vortex run incorrectly ~ lar, the stack accounts for a significant fraction of acceseéh-
on our native Alpha platform because of unaligned addregses out ever presenting a significant problem to the DL1. The sole
erated by their custom memory-managers. While these urealig exception is186.crafty where the stack collectively contributes
addresses could be fixed by modifying the benchmark sources,More misses than any single global data structure. As we have
we estimate that adding the necessary padding could signifjc seen, however] 86.crafty has a very balanced distribution, and
perturb benchmark behavior. the stack still accounts for only 11% of DL1 misses.

For each of our benchmarks we simulate a run using the des-
ignateq ref input set.. We demargate the erld of initiglizab? 4.2. Access pattern variety
a special opcode using the techniques outlined previoudllis

3.2. Benchmarks, inputs and simulation intervals

section, and perform fast functional simulation until wadale this So far we have looked at differences in miss distributionssthe
opcode. Thereafter we perform detailed timing simulatam00 major data structures in the different SPEC benchmark vl
million instructions. Prior results over the entire sintathexecu- ing details about the individual data structures behindatieny-

tion of 9 of our 12 benchmarks confirm that these simulategtint mous names DS1, DS2 and DS3. Table 2 now summarizes the
vals are representative, with one exceptid81.mcf contains 2 high-level details of these data structures. For each lmeadh
separate phases that alternately stressitities andar cs data we show the name of these data structures as used in the source

a. DL1 Accesses (Normalized) b. DL1 Misses (Normalized)

100 100
80 8 DS1 80 8 DS1
60 8 DS2 60 1 DS2
1 DS3 1 DS3
40 Stack 40 Stack
20 Other 20 Other
0 © " 0 . "
v & liog N
§SSEFLIFEEFS SLEEFLTFEEFS
o o A SO ~Q P Lo o &N S G Q
NN A > ¢ T RS NN A > T L AR S
O N S A Y Q9 oo AT S O N S A Y Q9 oo AT S
K YT S Se v K YT E TS e v
c. DL1 Miss-Rate (%) d. L2 Miss-Rate (%)
100 100
80 m DS1 80 n DS1
60 ® DS2 60 » DS2
40 ® DS3 40 m DS3
20 Stack 20 Stack
0 ® Y 0 @ = >
<) o 1N <) o 1N
SSSEFLIEELFS SSSEFLIEESLFS
oo &R S S < oo &R S S Q
y A A A S TR OO ARSI SR FR oS
O N N A N & © o A © O N N A N & © o A ©
X M A X M A

Figure 3: Decomposition of DL1 and L2 behavior by data sticest Horizontal lines in the miss-rate graphs indicate tigregate miss
rate for each benchmark across all data structures. L2 sii$s®v similar trends to DL1 misses.

code, along with a brief summary of the type of the data struc- 4.3. Case study: Data structure criticality
ture (array or recursive), whether it is predominantly ased in
aregular fashion with spatial locality or in an irregular fashion
with low spatial locality. Finally, we provide the size ofataob-
jectin these data structures and their total sizes in thicapion.

Our first case study concerns criticality of memory refeeenc
Several recent studies have showed that not all cache n@sses
equally important as measured in the amount of latency Hest t
expose to the processor [17]. In this context, does it makses®

Table 2 shows that the major data structures are predomi- gimnyy yse miss counts to select the data structures on vdifoR
nantly array-based in the applications we study. Howeberse cus our attentions? To answer this question we augment RTrac

data structures are often used to emulate complex graphs USyg getect cycles when no instructions are retired, and agsig
ing either real pointers1@l.mcf:nodes, 175.vprirr node) sponsibility for each sucktall cycleto the data structure refer-
or integers that index into other array&56.bzip2:quadr ant , enced by the load or store at the head of the reorder buff¢r [16
300.twolf:r ows). The wide variety of uses indicate that data o resuits show that for our applications the data stresttiat
structures are often declared to be arrays solely to siynpigm- cause the most misses are almost always also the ones rigépons
ory management. for the most stall cycles. There are two exceptions to tleisdr
While the regular applicationd79.art and 183.equake The first is in the neural-network simulation b79.art; the array
have regular access patterns, the others interleave Ispatia of top-down weightg ds causes only 2.1% of all cache misses,
pointer access in complex ways. This interleaving may hap- but is responsible for 16.6% of all stall cycles. This datacttre
pen either because of strided access through an array whileis critical because of the following loop that accumulatesibset

dereferencing pointer fields from each elememicfinodes, of its elements:

188.ammp:at ons), or because of strided access that uses the

elements of one array to index into anotherip2:quadr ant , for (tj=0;tj<nunf2s;tj++) {

300.twolf:r ows) in a form of pointer traversal that current if ((tj == winner)&(Y[tj].y > 0))

pointer prefetching schemes [12, 4] often cannot detedinally tsum += tds[ti][tj] * d;

because we access the elements of a data structure in aregul }

order, but each object spans multiple cache blocks that@re a

cessed sequentiallipimp:nodel i st , twolf:net pt r) due to This combination of data-dependent branches and compntati
large object size or irregular object alignment in the cachiech serialized byt sumcauses the infrequent cache misses in this loop
complex interleavings are a challenge to both spatial anmtere to almost invariably stall the pipeline. Our conclusiontieagth-
based prefetch systems. ened by a study of the source code — the above loop is the only

Having used the basic capabilities of DTrack to charaateriz major access pattern not shared with the dual array of betjom
our applications, we now explore novel uses of DTrack inragki ~ weightsbus. The second data structure that we observe caus-
and answering sophisticated questions on architectuigrdes ing a disproportionate number of stalls is the variadar ch in

| Benchmark | DS1 DS2 | DS3 |

164.gzip Wi ndow prev fd
array — regular array — regular array — regular
64 KB in 2-byte objects 64 KB in 2-byte objects 184320 KB in 1-byte objects
175.vpr rr_node heap rr_node_r out e_i nf
array — irregular array — irregular array — irregular
10638 KB in 40-byte objects 6717 KB in 24-byte objects 2653 KB in 16-byte objects
176.gcc reg.l ast sets reg. ast _uses gt y_const _i nsn
array — irregular array — irregular array — irregular
0.5 KB in 8-byte objects 0.5 KB in 8-byte objects 4 KB in 8-byte objects
177.mesa I mage Buffer Dept h Buffer Vertex Buffer
array — regular array — regular array — regular
2560 KB in 2-byte objects 5120 KB in 4-byte objects 920 KB in 1 object
179.art f1.layer bus tds
array — regular array — regular array — regular
625 KB in 64-byte objects 859 KB in 8-byte objects 859 KB in 8-byte objects
181.mcf nodes arcs dunmy_arcs
array — regular & irregular array — irregular array — irregular
7071 KB in 120-byte objects 188416 KB in 64-byte objects 3771 KB in 64-byte objects
183.equake K di sp M
3D array — regular 3D array — regular 2D array — regular
22399 KB in 8-byte objects 2828 KB in 8-byte objects 943 KB in 8-byte objects
186.crafty rook_attacks_rl 90 | ast _ones first_ones
array — irregular array — irregular array — irregular
128 KB in 8-byte objects 64 KB in 1-byte objects 64 KB in 1-byte objects
188.ammp at ons nodel i st atom i st
pointer — regular & irregular array — regular array — regular
41322 KB in 2208-byte objects 76 KB in 232-byte objects 4372 KB in 232-byte objects
197 .parser Connect or Di sj unct tabl e
various — irregular various — irregular various — irregular
variable allocation in 24-byte objects variable allocation in 40-byte objects variable allocation in 40-byte objects
255.bzip2 bl ock quadr ant zptr
array — irregular array — irregular array — irregular
900 KB in 1-byte objects 1800 KB in 2-byte objects 3600 KB in 4-byte objects
300.twolf net _array[] —netptr t np_r ows r ows
pointer — irregular array — irregular array — irregular
253 KB in 48-byte objects 34 KB in 1-byte objects 34 KB in 1-byte objects

Table 2: Descriptions of the major data structures in Figurenformation on each benchmark for each major data streicttontainer
type, access pattern, container and element size.

the chess-playing benchmatB6.crafty, which is responsible for important data structure in an application has limited iotfmn

10.5% of all stall cycles in spite of causing just 0.2% of altkhe bottomline performance in a majority of our applicationshii&/
misses. This global data structure contains the chessqrobie- there are a few exceptions, namélg8.ammp, 183.equake, it
ing currently analyzed, and is used to display the board mesc usually requires perfect memory for 2-5 major data strestuo
With the exception of these two data structures, the cdioelde- bring performance close to ideal. This result shows thatréut
tween miss count and stall cycle count shows that datatateic architectural and compiler enhancements will often needpto
criticality is of limited usefulness in the predominanttyegular timize multiple data structures in different ways to sigrafitly
programs that we study. improve overall performance in memory-bound applications

A related idealization experiment that provides indiremtfér-
mation of this result explores the effect of selectivelyvidog
different data structures perfect single-cycle access @émany.
To model this ideal behavior we simulate cache misses tdfgpec ~ Where Figures 3.a and 3.b show the distribution of accesdast

4.4. Case study: Competition for caches

data structures in a single cycle, but continue to move déetseise DL1 and L2, Figures 3.c and 3.d show the corresponding miss-
structures through the memory hierarchy so as to not giveroth rates at each level of the memory hierarchy. A common pattern
data structures an unrealistically generous view of caapadity. in these figures is for a data structure with fewer cache misse
We find that selectively eliminating cache misses in evemtbst to have a higher miss-rate. This pattern occurs as the majar d

Evictions of useful data (Normalized)

100
diff
50 m same
0
w
N

Figure 4: Breakdown of premature evictions: does the evicte
belong to the same or a different (diff) data structure?

structures compete with each other for limited cache capaw

that a data structure that misses more often ends up witlgerlar
fraction of the cache. While this is qualitatively a desieale-
sponse, such competition may cause suboptimal performéance
different data structures repeatedly evict each othehidftiehav-

ior were found to be common, a computer architect may conside
creating split caches [7] with static mapping policies gisisig
each data structure to a specific cache partition. Figureodsh
how often useful data in the cache is prematurely evicted by a
different data structure as opposed to the same one. With the
exception 0f256.bzip2 the majority of premature evictions are
caused by conflict within a data structure, rendering a sptihe

by data structure unnecessary for these applications.afdishe
previous experiment are good examples of the ways that BTrac
can help the computer architect with design decisions wtrare
ditional tools are unable to do so.

5. Conclusions and Future Work

In optimizing the performance of the memory hierarchy, arch
tects and compiler writers have traditionally had very afiint
views of application programs. Architects have usuallytee

the application as a black box and focussed on regularities i
the overall address stream, while compiler writers and iegpl
tion programmers have focussed on identifying fine-graiogd
timization opportunities without access to detailed mneatinfor-
mation. In this paper, we combine the advantages of the two ap
proaches by gathering runtime information and correlatiagth
program features in a semi-automated way. The resultingadet
ology for decomposing the address stream into multipleastise
yields more detailed characterizations of applicatioas pnovide

a richer view than the aggregate statistics of conventiorehod-
ologies. Applying itto 12 of the C SPEC CPU2000 benchmarks is
successful at highlighting and quantifying the variapilit miss
distributions and access patterns in the SPEC benchmak sui
It is also able to focus on the specific data structures thaw sh
unique behavior, such as a disproportionate number of memor
stall cycles.

Future work on this project continues along two major direc-
tions: extending our application analysis to a study of pHaes-
havior, and using our insights in the design of a novel pobieg
system that uses a combination of software hints and haedwar
prefetching to allow extremely early prefetching withonygos-
sibility of cache pollution. Preliminary results are praing and
provide further evidence that the DTrack methodology higtis

(1]

(2]

(31

(5]

o))

(6]

(7]

(8]

El

(10]

(11]

(12]

(13]

(14]

[15]
[16]

[17]

(18]

underlying regularities in application behavior, regitles that
should prove useful in compiler, hardware and benchmarigdes

References

S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and
R. Gupta. Predictability of load/store instruction latiesc InPro-
ceedings of the 28th International Symposium on Microdechi
ture, Austin, TX, Dec. 1993.

D. Burger and T. M. Austin. The simplescalar tool set i@ns2.0.
Technical Report 1342, Department of Computer Sciencesgtin
sity of Wisconsin-Madison, June 1997.

T. M. Chilimbi and M. Hirzel. Dynamic hot data stream pet&thing

for general-purpose programs.Pnoceeding of the ACM SIGPLAN
2002 Conference on Programming language design and impleme
tation, 2002.

R. Cooksey, S. Jourdan, and D. Grunwald. A statelessteatn
directed data prefetching mechanism. ASPLOS-X: Proceedings
of the 10th international conference on Architectural sopdor
programming languages and operating systempages 279-290,
New York, NY, USA, 2002. ACM Press.

R. Desikan, D. Burger, and S. W. Keckler. Measuring ekpen-

tal error in microprocessor simulation. Rroceedings of the 28th
Annual International Symposium on Computer Architegtpeges
266-277, July 2001.

S. Z. Guyer, D. A. Jiménez, and C. Lin. The C-Breeze cdenpi
infrastructure. Technical Report TR 01-43, Dept. of Corep&ci-
ences, University of Texas at Austin, November 2001.

1. J. Haikala and P. H. Kutvonen. Split cache organizagioln Per-
formance '84: Proceedings of the Tenth International Sysipa

on Computer Performance Modelling, Measurement and Evalua
tion, pages 459-472. North-Holland, 1985.

M. D. Hill. A case for direct-mapped cachedEEE Computer
21(12):25-40, Dec. 1988.

A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case studylEEE Computer pages 15-26, Oct.
1994.

M. Martonosi, A. Gupta, and T. E. Anderson. MemSpy: Amzal
ing memory system bottlenecks in programs. Piroceedings of
the ACM SIGMETRICS Conference on Measurement & Modeling
Computer Systempages 1-12, Newport, RI, June 1992.

K. S. McKinley and O. Temam. A quantitative analysisa@dp nest
locality. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Ofiata
Systemspages 94-104, Cambridge, MA, Oct. 1996.

A. Roth and G. Sohi. Effective jump-pointer prefetahifor linked
data structures. IRroceedings of the 26th International Symposium
on Computer Architecturédtlanta, GA, May 1999.

S. Rubin, R. Bodik, and T. M. Chilimbi. An efficient pradi
analysis framework for data-layout optimizations. Rroceedings

of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming language<002.

M. L. Seidl and B. G. Zorn. Segregating heap objects ligremce
behavior and lifetime. IProceedings of the Eighth International
Conference on Architectural Support for Programming Laeggs
and Operating Systempages 12—-23, San Jose, CA, Oct. 1998.

A. J. Smith. Second bibliography on cache memori€smputer
Architecture Newsl9(4):154-182, June 1991.

J. E. Smith and A. R. Pleszkun. Implementing preciserimipts in
pipelined processorsEEE Trans. Comput37(5):562-573, 1988.

S. Srinivasan, R. Ju, A. R. Lebeck, and C. Wilkerson. dlibg vs.
criticality. In Proceedings of the 28th International Symposium on
Computer Architecturepages 132—-144, June 2001.

E. van der Deijl, G. Kanbier, O. Temam, and E. Granstortaghe
visualization tool.IEEE Computerpages 71-78, July 1997.

