
The Memory Behavior of Data Structures in C SPEC CPU2000 Benchmarks

Kartik K. Agaram Stephen W. Keckler
Calvin Lin Kathryn S. McKinley
Department of Computer Sciences
The University of Texas at Austin

ABSTRACT

As a result of application and computer system design trends,
the memory system continues to exert a dominant influence on
program performance. While understanding how complex ap-
plications use complex computer systems is important to hard-
ware, software, and benchmark designers, this is a difficulttask.
This paper demonstrates a system called DTrack that provides
deeper insight into how an application uses the memory system.
DTrack classifies memory accesses on a per data structure basis,
enabling analysis of the regularity and locality of these program
components. Applying the DTrack methodology to 12 C SPEC
CPU2000 benchmarks, we demonstrate that this classification re-
veals data structure interactions that remain obscured with tra-
ditional aggregation-based analysis methods. Our characteriza-
tion reveals the degree of diversity in memory behavior among
the benchmarks within this suite, and we discuss how these in-
sights can be used by system and application designers to achieve
high performance through memory system and compiler improve-
ments.

1. Introduction

A computer system’s memory hierarchy has a substantial, if not
dominant, effect on application performance. The importance of
memory system behavior will continue to grow as the gap be-
tween memory speeds and processor speeds increases. In addi-
tion, applications are continuing to grow in complexity, which
places additional burden on the memory system due to large or
irregularly accessed data structures. Understanding how applica-
tions use the memory system is important to at least three groups:
(1) system designers who can apply insights into memory system
usage to improve hardware and software memory optimization
techniques, (2) application writers who can understand howtheir
program uses the memory system and optimize for better local-
ity, and (3) benchmark developers who want to ensure that thedi-
verse patterns of behavior in realistic applications are represented.
While many tools have been developed to analyze memory behav-
ior [18, 9, 10, 11], none give insight into the behavior of individual
data structures within a program. This paper describes our system
- DTrack - which gathers memory system statistics on a per data
structure basis, to help identify those data structures that have the
strongest influence on performance and to offer insight intotheir
size and access regularity.

DTrack consists of a C-to-C compiler that automatically in-
struments variable allocations in programs and a detailed timing
simulator that consumes this instrumentation. This combination
yields a tool that generates data profiles - detailed breakdowns
of cache misses by the different high-level data structuresin the
source code. Given the data profile, we then manually combine

it with a conventional code profile to determine the dominantac-
cess patterns for each data structure. Applying our methodology
to 12 of the 15 C SPEC CPU2000 benchmarks, we demonstrate
that our approach is able to partition seemingly irregular access
patterns into streams that are more regular and easier to under-
stand. Our characterization reveals important patterns inthe dis-
tribution of cache misses in the major data structures of programs,
and highlights unique behaviors in specific SPEC benchmarks.
We demonstrate the usefulness of our tool by means of two case
studies, showing sophisticated design decisions that a computer
architect may face and the way that DTrack helps make these de-
cisions.

The remainder of this paper is organized as follows. Section2
distinguishes our work from prior memory system analysis stud-
ies and tools. Section 3 describes our methodology, explains the
mechanisms employed to minimize the invasiveness of the instru-
mentation we add to the benchmarks, and quantitatively measures
both the invasiveness and the impact of our modifications on sim-
ulation time. Section 4 presents experimental results, highlighting
the additional insight on dominanant access patterns gained by
our detailed statistics, and illustrating how this rich picture of ap-
plication behavior can be used from the perspective of a computer
architect. Finally, Section 5 provides conclusions and thoughts on
future work.

2. Related Work

Conventional methodology for characterizing applications in-
volves either cache or timing simulation [1, 8, 15, 2]. Thesetech-
niques operate at the level of the application executable without
recourse to the high-level structure of the program. As a result,
their output is limited to aggregate statistics about hardware ex-
ecution, such as the mean number of instructions executed per
clock cycle, miss-rates at the various cache hierarchies, and sim-
ilar hardwareevents. DTrack provides a technique to connect
these hardware events to high-level structures in the application
source code.

Tools have been created in the past to decompose application
memory performance by data structure, but they have thus far
been restricted to studying arrays. The original such tool is Mem-
Spy by Martonosi et al. [10] which operated on loop nests in For-
tran programs. Similarly, Lebeck et al. [9] present data struc-
ture and procedure level aggreagate miss information and clas-
sify misses as compulsory, capacity and conflict. While these
tools present several software optimizations for improving cache
performance, they examine the behavior of an array within the
context of a single procedure. As a result, they do not perform
cross data structure analysis, and do not consider the question of
whether data structures interfere with themselves or with others.

McKinley and Temam analyze the complementary dimension

asm ("mop") ;

struct foo bar ;

void main () {

 NAME = "f2" ;
 PTR = f2 ;
 SIZE = sizeof (struct foo) ;

 f2 = malloc (sizeof (struct foo)) ;

}

asm ("mop") ;

FILE.print ("bar", &bar, sizeof (bar)) ;

 addLayout () ;
}

if (inst == mop) {
}

struct foo bar ;

void main () {
 f2 = malloc (struct foo) ;

c−breeze

sim−alpha

cc

Figure 1: DTrack, a tool for observing data structures in programs

of inter-nest and intra-nest loop locality [11], but again consider
only arrays and aggregate information between loop nests. Fi-
nally, the Cache Visualization Tool [18] demonstrates the time-
varying behavior of arrays as they march through the cache. This
level of detail supports analyzing a single loop nest at a time,
whereas we analyze data structure phase behavior across much
longer periods. Seidl and Zorn [14] use a technique similar to
ours to partition the heap into segments based on object lifetimes,
without performing the more fine-grained analysis to separate the
behavior of objects by data structure that we do. Finally, Chilimbi
et al. [3, 13] analyze compressed program traces, decomposethem
into hot data streams, and use these hot data streams to drive lay-
out and prefetching optimizations. This approach of searching for
access patterns across the different data structures in a program
is complementary to ours, which attempts to decompose applica-
tion access patterns by data structure. We believe our approach is
more effective at providing intuitions about application behavior
that are useful to humans in different roles.

3. Methodology

This section describes our methodology for performing detailed
analyses of applications from a memory system perspective.We
describe techniques to map addresses to data structures while
minimizing the degree to which we perturb underlying application
behavior. We also describe the machine configuration we simulate
in our characterization, the simulation intervals we choose, and
the aggregate statistics for our benchmarks that can be gleaned
from conventional tools.

3.1. Mapping addresses to data structures

DTrack maps addresses to data structures by automatically in-
serting instrumentation in the application to communicatethe ad-
dress range corresponding to each variable to the simulator. The
challenge here is to keep the overhead due to the instrumentation
low and to minimize the perturbance to the application. Figure 1
shows a schematic of our tool. First, we automatically instrument
benchmark sources using an extension to the C-Breeze [6] C-to-
C compiler. We then simulate them on a modified version of the
sim-alpha [5] timing simulator that simulates the configuration
shown in Figure 2, including a rambus memory model. For each
variable in the program, the compiler-generated instrumentation
stores the variable’s name and address at a designated location in
memory and interrupts the simulator by means of a special opcode

Feature Size/Value

Data caches
DL1 cache 64 KB, blocksize 64 bytes, 2-way,

3 cycles
L2 cache 512 KB, blocksize 64 bytes,

direct-mapped, 12 cycles
TLBs 128 entries

Main memory
Peak bandwidth 1.6Gbytes/s
Rambus geometry 64 banks * 512 rows * 2KB/row
Access latency (cycles) 32 PRER + 24 ACT + 48 RD/WR

+ queuing

Out-of-order Processor
Pipeline width 4
Int ALUs, multipliers 4,4
FP ALUs, multipliers 1,1
Branch predictor Tournament, 1 KB x 1 KB local,

4 KB global, 4 KB choice

Figure 2: Details of the simulated Alpha 21264-like processor and
memory hierarchy

(“mop” in Figure 1). On executing this instruction at runtime, the
simulator imports the information from this designated location in
simulated memory. Since the simulator knows the extent of each
variable in the application at any time, it maps the address of each
cache access to a specific variable. Classifying and assigning each
load and store to a specific variable slows the simulator downby
60% on average and 100% in the worst case.

We track both heap allocations and deallocations because the
same raw address could be allocated to different data structures
at different times in a program’s execution. Since we classify
heap allocations according to their static location in the source
code, we cannot distinguish between instances of a data structure,
such as two linked lists whose nodes are allocated at the same
line in the source. This issue is not a concern in studying theC
SPEC CPU2000 benchmarks because the major data structures
do not have multiple instances. Other languages and benchmarks
may require more elaborate heuristics. Global variables are han-
dled differently. Rather than communicate them individually to
the simulator by the above method, the instrumentation writes the
names and extents of all global variables to a designated fileon
program initialization. Though the set of file writes is expensive,

2

Benchmark IPC DL1 L2
Miss-rate Miss-rate

164.gzip 1.39 2.3 3.9
175.vpr 0.67 3.0 35.3
176.gcc 1.15 3.2 10.4
177.mesa 1.06 0.9 23.4
179.art 0.23 14.8 74.9
181.mcf 0.14 24.1 60.5
183.equake 0.58 14.1 29.4
186.crafty 1.21 1.3 4.3
188.ammp 0.57 10.0 45.0
197.parser 0.97 3.6 21.5
256.bzip2 1.16 2.1 32.6
300.twolf 0.51 9.5 26.9

Table 1: The benchmarks we use and their aggregate memory
hierarchy behavior

it is a one-time startup cost. Finally, stack variables are not in-
strumented because the high frequency of scope changes would
raise the instrumentation overhead too much. Instead, we treat
the stack as a single data structure and coalesce all accesses to it
by a simple range test. Our results will show that misses to the
stack are generally negligible. In combination these techniques
to instrument the global segment, heap and stack limit the pertur-
bance due to our instrumentation to less than 0.6% of the instruc-
tion count across all benchmarks except for164.gzip, where the
instrumentation is 3.7% of the total instruction count because of
frequent heap allocations in the inner loops.

3.2. Benchmarks, inputs and simulation intervals

This paper presents a characterization of 12 of the 15 C bench-
marks in the SPEC CPU2000 benchmark suite. Table 1 lists
some aggregate properties of the benchmarks we study, including
average instructions per cycle (IPC) and miss-rates at the level-
1 data (DL1) and level-2 (L2) caches. Our benchmarks range
from regular ones such as179.art to highly irregular ones such
as300.twolf, from compute-bound (164.gzip) to memory-bound
(181.mcf). We are unable to study the remaining 3 C benchmarks
in the SPEC CPU2000 suite due to methodological difficulties;
253.perlbmk no longer builds on our Alpha platform with the lat-
est version of libc, and254.gap and255.vortex run incorrectly
on our native Alpha platform because of unaligned addressesgen-
erated by their custom memory-managers. While these unaligned
addresses could be fixed by modifying the benchmark sources,
we estimate that adding the necessary padding could significantly
perturb benchmark behavior.

For each of our benchmarks we simulate a run using the des-
ignated ref input set. We demarcate the end of initialization by
a special opcode using the techniques outlined previously in this
section, and perform fast functional simulation until we reach this
opcode. Thereafter we perform detailed timing simulation for 500
million instructions. Prior results over the entire simulated execu-
tion of 9 of our 12 benchmarks confirm that these simulated inter-
vals are representative, with one exception:181.mcf contains 2
separate phases that alternately stress thenodes andarcs data

structures. We simulate only one of them due to lack of simulation
time. As a result, while our results correctly reflect the major data
structures in181.mcf, they tend to under-estimate the importance
of arcs.

4. Results

This section presents a detailed characterization of the above
SPEC benchmarks using DTrack. We begin by studying basic
data profiles generated by DTrack, and then explore two ways
that this new capability to visualize the behavior of different data
structures can be used to help answer sophisticated architectural
questions.

4.1. Data profiles and distributions

DTrack generates data profiles. Figure 3 breaks down the aggre-
gate memory behavior of our applications – accesses and miss-
rates at the DL1 and L2 – by the three data structures that cause
the most DL1 misses (DS1, DS2, DS3), the stack, and everything
else. Figure 3.a shows that the breakdown of accesses to the DL1
(and therefore the rest of the memory hierarchy) varies greatly
across our applications. While179.art and181.mcf have skewed
distributions, with 80% of all accesses coming from 2 data struc-
tures,176.gcc and 186.crafty have extremely balanced distri-
butions; no data structure contributes more than 2% of accesses.
Other applications lie between these extremes.

While accesses are often spread out, Figure 3.b shows that
misses tend to cluster. The top 5 data structures usually contribute
more than 90% of all DL1 misses. The exceptions are176.gcc,
186.crafty, and197.parser with a long tail of minor data struc-
tures that respectively end up accounting for 84%, 67% and 78%
of all cache misses. Among the other applications, the majordata
structures end up partitioning cache misses among themselves in
a variety of ways; the top data structure can contribute anywhere
between 20 and 80% of total cache misses.

Comparing Figures 3.a and 3.b, we see that cache misses
and accesses are poorly correlated. A few applications suchas
179.art and 181.mcf reveal a simple underlying organization
with only a few data structures, and misses tracking the distri-
bution of accesses. However, the majority of applications show
a well-understood pattern where a data structure receives more
accesses than another, yet accounts for fewer misses. In particu-
lar, the stack accounts for a significant fraction of accesses with-
out ever presenting a significant problem to the DL1. The sole
exception is186.crafty where the stack collectively contributes
more misses than any single global data structure. As we have
seen, however,186.crafty has a very balanced distribution, and
the stack still accounts for only 11% of DL1 misses.

4.2. Access pattern variety

So far we have looked at differences in miss distribution across the
major data structures in the different SPEC benchmarks while hid-
ing details about the individual data structures behind theanony-
mous names DS1, DS2 and DS3. Table 2 now summarizes the
high-level details of these data structures. For each benchmark,
we show the name of these data structures as used in the source

3

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f

0

20

40

60

80

100

DS1
DS2
DS3
Stack
Other

a. DL1 Accesses (Normalized)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f

0

20

40

60

80

100

DS1
DS2
DS3
Stack
Other

b. DL1 Misses (Normalized)
16

4.
gz

ip
17

5.
vp

r
17

6.
gc

c
17

7.
m

es
a

17
9.

ar
t

18
1.

m
cf

18
3.

eq
ua

ke
18

6.
cr

af
ty

18
8.

am
m

p
19

7.
pa

rs
er

25
6.

bz
ip

2
30

0.
tw

ol
f

0

20

40

60

80

100

DS1
DS2
DS3
Stack

c. DL1 Miss-Rate (%)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f

0

20

40

60

80

100

DS1
DS2
DS3
Stack

d. L2 Miss-Rate (%)

Figure 3: Decomposition of DL1 and L2 behavior by data structure. Horizontal lines in the miss-rate graphs indicate the aggregate miss
rate for each benchmark across all data structures. L2 misses show similar trends to DL1 misses.

code, along with a brief summary of the type of the data struc-
ture (array or recursive), whether it is predominantly accessed in
a regular fashion with spatial locality or in an irregular fashion
with low spatial locality. Finally, we provide the size of each ob-
ject in these data structures and their total sizes in the application.

Table 2 shows that the major data structures are predomi-
nantly array-based in the applications we study. However, these
data structures are often used to emulate complex graphs us-
ing either real pointers (181.mcf:nodes, 175.vpr:rr node)
or integers that index into other arrays (256.bzip2:quadrant,
300.twolf:rows). The wide variety of uses indicate that data
structures are often declared to be arrays solely to simplify mem-
ory management.

While the regular applications179.art and 183.equake
have regular access patterns, the others interleave spatial and
pointer access in complex ways. This interleaving may hap-
pen either because of strided access through an array while
dereferencing pointer fields from each element (mcf:nodes,
188.ammp:atoms), or because of strided access that uses the
elements of one array to index into another (bzip2:quadrant,
300.twolf:rows) in a form of pointer traversal that current
pointer prefetching schemes [12, 4] often cannot detect, orfinally
because we access the elements of a data structure in irregular
order, but each object spans multiple cache blocks that are ac-
cessed sequentially (ammp:nodelist, twolf:netptr) due to
large object size or irregular object alignment in the cache. Such
complex interleavings are a challenge to both spatial and pointer-
based prefetch systems.

Having used the basic capabilities of DTrack to characterize
our applications, we now explore novel uses of DTrack in asking
and answering sophisticated questions on architecture design.

4.3. Case study: Data structure criticality

Our first case study concerns criticality of memory reference.
Several recent studies have showed that not all cache missesare
equally important as measured in the amount of latency that they
expose to the processor [17]. In this context, does it make sense to
simply use miss counts to select the data structures on whichto fo-
cus our attentions? To answer this question we augment DTrack
to detect cycles when no instructions are retired, and assign re-
sponsibility for each suchstall cycleto the data structure refer-
enced by the load or store at the head of the reorder buffer [16].
Our results show that for our applications the data structures that
cause the most misses are almost always also the ones responsible
for the most stall cycles. There are two exceptions to this trend.
The first is in the neural-network simulation of179.art; the array
of top-down weightstds causes only 2.1% of all cache misses,
but is responsible for 16.6% of all stall cycles. This data structure
is critical because of the following loop that accumulates asubset
of its elements:

for (tj=0;tj<numf2s;tj++) {
if ((tj == winner)&&(Y[tj].y > 0))

tsum += tds[ti][tj] * d;
}

This combination of data-dependent branches and computation
serialized bytsum causes the infrequent cache misses in this loop
to almost invariably stall the pipeline. Our conclusion is strength-
ened by a study of the source code – the above loop is the only
major access pattern not shared with the dual array of bottom-up
weightsbus. The second data structure that we observe caus-
ing a disproportionate number of stalls is the variablesearch in

4

Benchmark DS1 DS2 DS3

164.gzip window prev fd
array – regular array – regular array – regular

64 KB in 2-byte objects 64 KB in 2-byte objects 184320 KB in 1-byte objects
175.vpr rr node heap rr node route inf

array – irregular array – irregular array – irregular
10638 KB in 40-byte objects 6717 KB in 24-byte objects 2653 KB in 16-byte objects

176.gcc reg last sets reg last uses qty const insn
array – irregular array – irregular array – irregular

0.5 KB in 8-byte objects 0.5 KB in 8-byte objects 4 KB in 8-byte objects
177.mesa Image Buffer Depth Buffer Vertex Buffer

array – regular array – regular array – regular
2560 KB in 2-byte objects 5120 KB in 4-byte objects 920 KB in 1 object

179.art f1 layer bus tds
array – regular array – regular array – regular

625 KB in 64-byte objects 859 KB in 8-byte objects 859 KB in 8-byte objects
181.mcf nodes arcs dummy arcs

array – regular & irregular array – irregular array – irregular
7071 KB in 120-byte objects 188416 KB in 64-byte objects 3771 KB in 64-byte objects

183.equake K disp M
3D array – regular 3D array – regular 2D array – regular

22399 KB in 8-byte objects 2828 KB in 8-byte objects 943 KB in 8-byte objects
186.crafty rook attacks rl90 last ones first ones

array – irregular array – irregular array – irregular
128 KB in 8-byte objects 64 KB in 1-byte objects 64 KB in 1-byte objects

188.ammp atoms nodelist atomlist
pointer – regular & irregular array – regular array – regular

41322 KB in 2208-byte objects 76 KB in 232-byte objects 4372 KB in 232-byte objects
197.parser Connector Disjunct table

various – irregular various – irregular various – irregular
variable allocation in 24-byte objects variable allocation in 40-byte objects variable allocation in 40-byte objects

255.bzip2 block quadrant zptr
array – irregular array – irregular array – irregular

900 KB in 1-byte objects 1800 KB in 2-byte objects 3600 KB in 4-byte objects
300.twolf net array[]!netptr tmp rows rows

pointer – irregular array – irregular array – irregular
253 KB in 48-byte objects 34 KB in 1-byte objects 34 KB in 1-byte objects

Table 2: Descriptions of the major data structures in Figure3. Information on each benchmark for each major data structure: container
type, access pattern, container and element size.

the chess-playing benchmark186.crafty, which is responsible for
10.5% of all stall cycles in spite of causing just 0.2% of all cache
misses. This global data structure contains the chess position be-
ing currently analyzed, and is used to display the board on screen.
With the exception of these two data structures, the correlation be-
tween miss count and stall cycle count shows that data-structure
criticality is of limited usefulness in the predominantly irregular
programs that we study.

A related idealization experiment that provides indirect confir-
mation of this result explores the effect of selectively providing
different data structures perfect single-cycle access to memory.
To model this ideal behavior we simulate cache misses to specific
data structures in a single cycle, but continue to move data in these
structures through the memory hierarchy so as to not give other
data structures an unrealistically generous view of cache capacity.
We find that selectively eliminating cache misses in even themost

important data structure in an application has limited impact on
bottomline performance in a majority of our applications. While
there are a few exceptions, namely188.ammp, 183.equake, it
usually requires perfect memory for 2-5 major data structures to
bring performance close to ideal. This result shows that future
architectural and compiler enhancements will often need toop-
timize multiple data structures in different ways to significantly
improve overall performance in memory-bound applications.

4.4. Case study: Competition for caches

Where Figures 3.a and 3.b show the distribution of accesses to the
DL1 and L2, Figures 3.c and 3.d show the corresponding miss-
rates at each level of the memory hierarchy. A common pattern
in these figures is for a data structure with fewer cache misses
to have a higher miss-rate. This pattern occurs as the major data

5

16
4.

gz
ip

16
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f

0

50

100

diff
same

Evictions of useful data (Normalized)

Figure 4: Breakdown of premature evictions: does the evicter
belong to the same or a different (diff) data structure?

structures compete with each other for limited cache capacity, so
that a data structure that misses more often ends up with a larger
fraction of the cache. While this is qualitatively a desirable re-
sponse, such competition may cause suboptimal performanceif
different data structures repeatedly evict each other. If this behav-
ior were found to be common, a computer architect may consider
creating split caches [7] with static mapping policies assigning
each data structure to a specific cache partition. Figure 4 shows
how often useful data in the cache is prematurely evicted by a
different data structure as opposed to the same one. With the
exception of256.bzip2 the majority of premature evictions are
caused by conflict within a data structure, rendering a splitcache
by data structure unnecessary for these applications. Thisand the
previous experiment are good examples of the ways that DTrack
can help the computer architect with design decisions wheretra-
ditional tools are unable to do so.

5. Conclusions and Future Work

In optimizing the performance of the memory hierarchy, archi-
tects and compiler writers have traditionally had very different
views of application programs. Architects have usually treated
the application as a black box and focussed on regularities in
the overall address stream, while compiler writers and applica-
tion programmers have focussed on identifying fine-grainedop-
timization opportunities without access to detailed runtime infor-
mation. In this paper, we combine the advantages of the two ap-
proaches by gathering runtime information and correlatingit with
program features in a semi-automated way. The resulting method-
ology for decomposing the address stream into multiple streams
yields more detailed characterizations of applications that provide
a richer view than the aggregate statistics of conventionalmethod-
ologies. Applying it to 12 of the C SPEC CPU2000 benchmarks is
successful at highlighting and quantifying the variability in miss
distributions and access patterns in the SPEC benchmark suite.
It is also able to focus on the specific data structures that show
unique behavior, such as a disproportionate number of memory
stall cycles.

Future work on this project continues along two major direc-
tions: extending our application analysis to a study of phase be-
havior, and using our insights in the design of a novel prefetching
system that uses a combination of software hints and hardware
prefetching to allow extremely early prefetching without any pos-
sibility of cache pollution. Preliminary results are promising and
provide further evidence that the DTrack methodology highlights

underlying regularities in application behavior, regularities that
should prove useful in compiler, hardware and benchmark design.

References

[1] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and
R. Gupta. Predictability of load/store instruction latencies. InPro-
ceedings of the 28th International Symposium on Microarchitec-
ture, Austin, TX, Dec. 1993.

[2] D. Burger and T. M. Austin. The simplescalar tool set version 2.0.
Technical Report 1342, Department of Computer Sciences, Univer-
sity of Wisconsin-Madison, June 1997.

[3] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching
for general-purpose programs. InProceeding of the ACM SIGPLAN
2002 Conference on Programming language design and implemen-
tation, 2002.

[4] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-
directed data prefetching mechanism. InASPLOS-X: Proceedings
of the 10th international conference on Architectural support for
programming languages and operating systems, pages 279–290,
New York, NY, USA, 2002. ACM Press.

[5] R. Desikan, D. Burger, and S. W. Keckler. Measuring experimen-
tal error in microprocessor simulation. InProceedings of the 28th
Annual International Symposium on Computer Architecture, pages
266–277, July 2001.

[6] S. Z. Guyer, D. A. Jiménez, and C. Lin. The C-Breeze compiler
infrastructure. Technical Report TR 01-43, Dept. of Computer Sci-
ences, University of Texas at Austin, November 2001.

[7] I. J. Haikala and P. H. Kutvonen. Split cache organizations. InPer-
formance ’84: Proceedings of the Tenth International Symposium
on Computer Performance Modelling, Measurement and Evalua-
tion, pages 459–472. North-Holland, 1985.

[8] M. D. Hill. A case for direct-mapped caches.IEEE Computer,
21(12):25–40, Dec. 1988.

[9] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case study.IEEE Computer, pages 15–26, Oct.
1994.

[10] M. Martonosi, A. Gupta, and T. E. Anderson. MemSpy: Analyz-
ing memory system bottlenecks in programs. InProceedings of
the ACM SIGMETRICS Conference on Measurement & Modeling
Computer Systems, pages 1–12, Newport, RI, June 1992.

[11] K. S. McKinley and O. Temam. A quantitative analysis of loop nest
locality. In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 94–104, Cambridge, MA, Oct. 1996.

[12] A. Roth and G. Sohi. Effective jump-pointer prefetching for linked
data structures. InProceedings of the 26th International Symposium
on Computer Architecture, Atlanta, GA, May 1999.

[13] S. Rubin, R. Bodik, and T. M. Chilimbi. An efficient profile-
analysis framework for data-layout optimizations. InProceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 2002.

[14] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. InProceedings of the Eighth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 12–23, San Jose, CA, Oct. 1998.

[15] A. J. Smith. Second bibliography on cache memories.Computer
Architecture News, 19(4):154–182, June 1991.

[16] J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in
pipelined processors.IEEE Trans. Comput., 37(5):562–573, 1988.

[17] S. Srinivasan, R. Ju, A. R. Lebeck, and C. Wilkerson. Locality vs.
criticality. In Proceedings of the 28th International Symposium on
Computer Architecture, pages 132–144, June 2001.

[18] E. van der Deijl, G. Kanbier, O. Temam, and E. Granston. Acache
visualization tool.IEEE Computer, pages 71–78, July 1997.

6

