WOSP/SIPEW 2010

First Joint WOSP/SIPEW International Conference on Performance Engineering

Analytical Modeling of Lock-based Concurrency Control

with arbitrary

Transaction Data Access Patterns

Pierangelo Di Sanzo, Roberto Palmieri, Bruno Ciciani, Francesco Quaglia Sapienza, Università di Roma, Italy

Paolo Romano

INESC-ID, Lisbon, Portugal

Transactional systems

- Transactional systems (TS) are fundamental building blocks for a lot of modern IT systems
- E.g., database systems, transactional memories, transactional file systems,...
- Basically this is due to their ability to ensure so-called ACID properties (Atomicity, Consistency, Isolation, Durability) in presence of concurrency
- Given the relevance of TS, accurate methodologies/techniques to study their performance are mandatory

transactional system

CC component

- Transactional Systems are formed by various subsystems/ components, closely working with each other
- Concurrency Control (CC) is the main TS proper component
- As for evaluation aspects, it is typically hard to isolate/capture
 CC overheads while the TS is operative
- It becomes extremely relevant to characterize CC via a ah-hoc models, easy to be integrated with models capturing the effects of other subsystems (e.g. buffer-pool models)
- The performance of CC is influenced by:
 - hardware resources contention
 - data contention

Data contention: Workloads

- Performance of transactional systems are impacted by the type of workload
- In most of cases, applications follow a set of specific patterns to access data
- Neglecting some specific workload features could bring to nonrealistic modelling/evaluation results
- One target is therefore the design of performance models capturing/expressing workloads representative of actual application patterns (transactional classes, sequence of accesses,...)

Existing analytical models for CC / 1

- Workload description is an input for these models
- Main lacks of existing analytical models:
 - Data Access Pattern
 - Neglect the specific data item accessed within each execution phase of a transaction but consider, for each phase, the same data access distribution over the whole data item set
 - High contention
 - Limit data contention on each data item
 - Not capture phenomena (e.g. lock-queuing bursts) due to high concurrency

Existing analytical models for CC / 2

- Example of divergence of the response time between:
 - simulation
 - an analytical model not capturing sequences (phases) of data accesses and high contention phenomena

- Workload details:
 - 1st to 5th operation executed on Table 1
 - 6th to 10th operation executed on Table 2
 - 11th to 15th operation executed on Table 3
 - 16th to 20th operation executed on Table 4

Contributions

- Analytical model of lock-based Concurrency Control
- Two main innovative features:

- Accurate modeling of Transactions' data access pattern
- Ability to express/represent realistic system workloads

Ability to capture lock-queuing phenomena in situations with heavy data contention among transactions

Model Description

- Strong Strict Two-Phase Locking Concurrency Control
- Each transaction is composed by M states from Begin to Commit
- Transaction executes one operation (read or write) per state
- Due to data contention, the execution could enter in a wait state, that is left when the locker transaction commits/ aborts

Model of transaction's execution

Data Access Pattern

- The transaction access pattern is modeled by [1 x M] matrix called A where:
 - I represents number of data items
 - M represents the phases of transaction's evolution
- Each cell $A_{i,k}$ of access matrix represents the probability that the k^{th} operation of transaction accesses the i^{th} data item
- The typology of transaction's operations is modeled by vector W
- | W | = M
- W_k represents the probability that k^{th} operation is a write

Access Matrix

0,5	0
0,5	0
0	1
0	0

Operations Vector

0	
1	

High data contention

- To cope with the evaluation of data contention, we have modeled the arrival-departure requests for each single data item i as a birth-death process with:
 - average arrival rate λ_i
 - average service rate $\mu_{i,j}$, where j corresponds to the number of standing requests for data item i in the corresponding state of the Markov chain
- We evaluated $\mu_{i,j}$ on the basis of interleaving of read and write requests observed in state j (i.e. considering an approximate probability distribution of the number of top standing reads)

Validation & Simulator

- We validate the model comparing numerical results with output of discrete event simulator developed using the C programming language
- Validation is performed via several scenarios:
 - Synthetic workloads
 - Workloads derived by abstracting the main features of the transaction profiles specified by the TPC-C benchmark

Description of Synthetic Workload / 1

- Data items are grouped in 5 contiguous sets (logically equivalent to, e.g., database tables)
- 20% write operations
- Workload 1:
 - Uniform distribution on each set of data items
 - Three transactions profiles:
 - Profile 1: 4 operations in each data item set (20 total operations)
 - Profile 2: 4 operations on set 1 and after other 4 on set 4 (8 total operations)
 - Profile 3: 4 operations on set 4 and after other 4 on set 5 (8 total operations)

Validation: Synthetic Workload 1

Numerical results of model follow the output of simulator also near the saturation point of system. This is the effect of capability's model to capture high contention scenarios

- Workload 2:
 - Represents a "stress" case
 - 15 operations for each transactional profile
 - Two transactions profiles with symmetric data access pattern:
 - Profile 1: 3 accesses to each set S_i starting from S_1 and then sequentially moving according to increasing set indexes
 - Profile 2: 3 accesses to each set starting from S₅ and then moving to the other sets according to a (reverse) decreasing order of the set indexes

Validation: Synthetic Workload 2

■ In such a configuration, items in the sets with extreme indexes (i.e. index 1 and index 5) experience lock holding times with high variance across the two transaction profiles

- Workload reflecting relevant features of a standard benchmark for transactional systems (TPC-C)
- Four main transaction profiles (P_i)

Database configuration

Table Name	# Items	
WAREHOUSE	500	tb0
DISTRICT	1000	tb1
CUSTOMER	15000	tb2
STOCK	500000	tb3
ITEM	100000	tb4
ORDER	1000	tb5
NEW-ORDER	1000	tb6
ORDER-LINE	1000	tb7
HISTORY	1000	tb8

Access Matrix

Phase	P _o	P ₁	P ₂	P ₃
0	(R),tb0	(R),tb0	(R),tb2	(R),tb6
1	(R),tb1	(R),tb1	(R),tb5	(W),tb6
2	(W),tb1	(R),tb2	(R),tb7	(R),tb5
3	(R),tb2	(W),tb0		(W),tb5
4	(W),tb5	(W),tb1		(R),tb7
5	(W),tb6	(W),tb2		(W),tb7
6	(R),tb4	(W),tb8		(R),tb2
7	(R),tb3			(W),tb2
8	(W),tb3			
9	(W),tb6			

Validation: TPC-C Workload

By the results it can be observed that our model well fits the simulation output

Assessments and future works

- Apply data access pattern methodology in other no lockbased concurrency control
- Propose innovative framework to capture dynamically profiles of transactions and auto-compose data access matrix

Thanks