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Motivation

• We consider Software as a Service (SaaS) environments

• SaaS permits scope for massive customizations

− Different users can use different mixes of system functions

• Need to characterize performance of a customized workload 

3 2/12/2010

• We focus on resource demands of customized workloads

− Inputs for analytic models used for sizing/resource management 

• Need techniques to accurately predict demands

− Many possible customizations  - direct measurements infeasible

• Contribution – Demand Estimation with Confidence (DEC)



Related work

• Linear regression

− Utilization and demands are linearly related (U=XD)

− Measure utilization and execution counts of system functions

− Get per-function demands – predict for arbitrary function mixes

− Variants - Least Squares (LSQ), Least Absolute Deviations (LAD)
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− Variants - Least Squares (LSQ), Least Absolute Deviations (LAD)

• Queuing Network Model (QNM) based approaches

− Assume a QNM and measured response times  available for a mix

− Estimate demands such that QNM R matches measured R

− DEC intended when QNM and measured R not available

• How does DEC compare with LSQ and LAD?



Problem statement

• Consider 

• system with M functions and R resources

• finite number of benchmarks B1….BB

• Benchmark – Semantically correct sequence of requests

• Examples – TPC-W sessions, SAP SD benchmark
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• Specified custom mix F = F1……..FM

• Fi is execution count for ith function

• Estimate for the specified custom workload mix

• demands D1….DR on R resources

• confidence intervals for D1….DR 



LSQ method

• Execute benchmarks B1….BB

• When benchmarks are executing, for each resource

• Measure busy time Yi

• Measure observed function counts F1,I…FM,I for sampling period i

• Apply LSQ
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• Apply LSQ

Inputs

Solve for
per component demands

Estimate the overall demand for

desired workload mix at resource



LAD method

• LAD minimizes absolute error instead of sum square of errors

• More robust towards demand outliers
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LAD minimizes absolute 

error



Notes on LSQ and LAD

• Both techniques rely on a series of assumptions

− Linear relationship between utilization and function counts

− Function demands are deterministic

− Errors - normally distributed (LSQ);Laplacian distributed (LAD)

• Both techniques impacted by violation of assumptions
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− Poor demand estimates

− Poor confidence interval estimates

• Both techniques can be impacted by multicollinearity

− Execution counts of 2 or more functions are correlated

− Observed in production systems (Pacifici et al, PEVA)

− Can’t distinguish per-function demands under correlations



DEC

• Predicts demands for joint use of functions

• Consider benchmarks B1….BB – each with its own mix

• Measure mean resource demands of each benchmark
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• Express desired mix as linear combination L of a subset of benchmarks

− Subset of B’ benchmarks executed as per L yields same mix as desired mix

• Estimate demand as linear combination L of demands of B’

Estimated demand



DEC – (cont’d)

• Example – (system with 3 functions and 1 resource)

Desired mix = [4 1 7]

B’ {B3=[2 0 3] B7=[0 1 0] B8=[ 0 0 1]}

DB’ = [2 5 1]
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DB’ = [2 5 1]

L = [2 1 1]T (2* B3 + 1* B7 +1* B8)

DS = DB’ L = 10

We use an iterative 

approach that employs 
linear programming to 
determine B’ and L



DEC VS Regression
• Advantages

− Insensitive to multicollinearity - doesn’t rely on per-function demands

− More robust confidence interval calculations

• Mean demand of benchmarks are normally distributed under 
central limit theorem (assuming large number of runs)

• It follows linear combination of mean demands is also normally 
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• It follows linear combination of mean demands is also normally 
distributed 

− Can prepare a validation performance test from the combination L

• Execute chosen benchmarks as per L – validate demands or 
performance objectives of the customized workload

• Limitations

− May not be always possible to realize exact match of mix

− Non-unique - multiple combinations possible for a given mix



Case study
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Results – cases with exact match
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DEC outperforms LSQ and LAD

DEC achieved exact match of mix for 55 cases



Results – all cases
Prediction errors for DB CPU demand (cases with non-exact matches 
included)
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DEC predictions become less reliable

However, errors still comparable with those of 
LSQ and LAD
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Results – exploiting flexibility of DEC to reduce errors
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Results - multicollinearity
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Results – confidence intervals
Confidence interval width of mean demand predictions
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Summary and conclusions

• DEC provides an alternative to regression-based demand estimation

− Accuracy compares favorably to regression

− Supports more robust confidence interval calculations

− Insensitive to multicollinearity

− Provides a performance-test based validation for predictions
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• Next steps

− Validate on other systems

− Study impact of service demand variability in a controlled manner

− Automate handling of cases with non-exact matches

− Consider systems whose demands for a given mix shift with time




