
 Performance Characterization of SPEC CPU Benchmarks on

Intel's Core Microarchitecture based processor

Sarah Bird ϕ , Aashish Phansalkarϕ , Lizy K. John ϕ , Alex Mericas α and Rajeev Indukuru α
ϕ University of Texas at Austin, α IBM Austin

 Abstract - The newly released CPU2006 benchmarks are long

and have large data access footprint. In this paper we study the

behavior of CPU2006 benchmarks on the newly released Intel's

Woodcrest processor based on the Core microarchitecture.

CPU2000 benchmarks, the predecessors of CPU2006

benchmarks, are also characterized to see if they both stress the

system in the same way. Specifically, we compare the differences

between the ability of SPEC CPU2000 and CPU2006 to stress

areas traditionally shown to impact CPI such as branch

prediction, first and second level caches and new unique features

of the Woodcrest processor.
 The recently released Core microarchitecture based

processors have many new features that help to increase the

performance per watt rating. However, the impact of these

features on various workloads has not been thoroughly studied.

We use our results to analyze the impact of new feature called

"Macro-fusion" on the SPEC Benchmarks. Macro-fusion reduces

the run time and hence improves absolute performance. We found

that although floating point benchmarks do not gain a lot from

macro-fusion, it has a significant impact on a majority of the

integer benchmarks.

1. Introduction

 The fifth generation of SPEC CPU benchmark suites

(CPU2006) was recently released. It has 29 benchmarks with

12 integer and 17 floating point programs. When a new

benchmark suite is released it is always interesting to see the

basic characteristics of programs and see how they stress a

state of the art processor and its memory hierarchy. The

research community in computer architecture often uses the

SPEC CPU benchmarks [4] to evaluate their ideas. For a

particular study e.g. memory hierarchy, researchers typically

want to know the range of cache miss-rates in the suite. Also, it

is important to compare them with the CPU2000 benchmarks.

This paper characterizes the benchmarks from the CPU2000

and CPU2006 suites on the state of the art Intel’s Woodcrest

system. Performance counters are used to measure the

characteristics.

 Intel recently released “Woodcrest” [9] which is a

processor based on the Core microarchiture [6] design. It has

multiple new features which improve the performance. One of

these features is “Macro-fusion”. We evaluate this feature for

CPU2006 benchmarks and see if it helps to reduce the cycles

of the benchmarks and hence improve performance. The idea

behind Macro-fusion [5][7] is to fuse pairs of compare and

jump instructions so that instead of decoding 4 instructions per

cycle, it can decode 5. This results in effectively increasing the

width of the processor. In this paper we measure the macro-

fused operations and correlate this measurement with the

resulting reduction in time i.e. improvement in performance.

We find that the improvement in performance is well

correlated to percentage of fused operations for integer

programs but not in case of floating point programs. We also

study which performance events show a good correlation to

the percentage of fused operations.

2. Performance Characterization of SPEC CPU

benchmarks

Table 1 (a) shows the instruction mix for the integer

benchmarks and (b) shows the same for the floating point

benchmarks of CPU2006 benchmarks. Benchmarks

456.hmmer,464.h264ref,410.bwaves,436.cactusADM,433.lesli

e3D , and 459.GemsFDTD have a very high percentage of

loads. Benchmarks 400.perlbench, 403.gcc, 429.mcf,

458.sjeng, and 483.xalancbmk show a high percentage of

branches. Instruction mix may not always give an idea about

the bottleneck for a benchmark but it can give an idea about

which parts are stressed by each of the benchmarks.

In this section we see the instructions mix of CPU2006

benchmarks and study how the integer benchmarks behave on

the Core microarchitecture based processor. We also show a

similar characterization for CPU2000 integer benchmarks.

Table 1: Instruction mix for CPU2006 (a) integer benchmarks

and (b) floating point benchmarks

(a)

Integer Benchmarks % Branches % Loads % Stores

400.perlbench 23.3% 23.9% 11.5%

401.bzip2 15.3% 26.4% 8.9%

403.gcc 21.9% 25.6% 13.1%

429.mcf 19.2% 30.6% 8.6%

445.gobmk 20.7% 27.9% 14.2%

456.hmmer 8.4% 40.8% 16.2%

458.sjeng 21.4% 21.1% 8.0%

462.libquantum 27.3% 14.4% 5.0%

464.h264ref 7.5% 35.0% 12.1%

471.omnetpp 20.7% 34.2% 17.7%

473.astar 17.1% 26.9% 4.6%

483.xalancbmk 25.7% 32.1% 9.0%

(b)

FP Benchmarks % Branches % Loads % Stores

410.bwaves 0.7% 46.5% 8.5%

416.gamess 7.9% 34.6% 9.2%

433.milc 1.5% 37.3% 10.7%

434.zeusmp 4.0% 28.7% 8.1%

435.gromacs 3.4% 29.4% 14.5%

436.cactusADM 0.2% 46.5% 13.2%

437.leslie3d 3.2%

45.4% 10.6%

444.namd 4.9% 23.3% 6.0%

447.dealII 17.2% 34.6% 7.3%

450.soplex 16.4% 38.9% 7.5%

453.povray 14.3% 30.0% 8.8%

454.calculix 4.6% 31.9% 3.1%

459.GemsFDTD 1.5% 45.1% 10.0%

465.tonto 5.9% 34.8% 10.8%

470.lbm 0.9% 26.3% 8.5%

481.wrf 5.7% 30.7% 7.5%

482.sphinx3 10.2% 30.4% 3.0%

0 25 50 75 100 125 150

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Misses per Kinst

(a)

0 25 50 75 100 125 150

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.tw olf

Misses per Kinst

(b)

Figure 1: (a) Shows L1 data cache misses per 1000

instructions for CPU2006 benchmarks and (b) shows the same

for CPU2000 benchmarks

Figure 1(a) shows the L1 data cache misses per 1000

instructions for CPU2006 benchmarks and Figure 1(b) shows

similar characterization for CPU2000 benchmarks. It is

interesting to see that the mcf benchmark in CPU2000 suite

shows a higher L1 data cache miss-rate than the mcf

benchmark in CPU2006. There are total 5 benchmarks in

CPU2000 which are close to or greater than 25 MPKI (misses

per 1000 instructions) but only 4 benchmarks in CPU2006

which are equal to or greater than 25 MPKI. From the results it

appears that the CPU2006 benchmarks do not stress the L1

data cache significantly more than CPU2000. However, it is

also important to see how they stress the L2 data cache. In

CPU2006 there are benchmarks e.g. 456.hmmr and 458.sjeng

which show MPKI which is smaller than 5. From Table 1 the

program which has the highest percentage of load instructions

shows the smallest cache miss rate. This shows that

456.hmmer exhibits good locality and hence shows a very low

cache miss-rate. The same could be said about 464.h264ref

for which the percentage of loads is 42% but the percentage of

L1 cache miss-rate is only close to 5 MPKI

Figure 2(a) and 2(b) show the MPKI (L2 cache misses per

1000 instructions for CPU2006 and CPU2000 benchmarks.

Even though the L1 cache miss-rates of both suites vary in the

same range, there is a drastic increase in the L2 cache miss-

rates for CPU2006 benchmarks as compared to CPU2000

benchmarks. This validates the fact that the CPU2006

benchmarks have much bigger data footprint and stress the L2

cache more with the data accesses. Figure 3(a) and 3(b) show

the branch mispredictions per 1000 instructions for CPU2006

and CPU2000 benchmarks respectively. It is reasonable to say

that there are a few benchmarks in CPU2006 which show

worse branch behavior than the CPU2000 benchmarks.

Table 2 shows the correlation coefficients of each of the

above measured characteristics with CPI using the

characteristics measured for CPU2006 benchmarks. If the

value of the correlation coefficient is closer to 1 it has more

impact on the performance (CPI). It is evident from Table 2

that the L2 cache misses per 1000 instructions has the greatest

impact on CPI of the metrics studied, followed by the L1

misses. The branch mispredictions do not affect the CPI as

much which suggests that the benchmarks which show poor

branch behavior will not necessarily show worse performance.

Table 2: Correlation coefficients of performance

characteristics with CPI

 Characteristics Correlation coefficient

Brach mispredictions per KI and CPI 0.150

L1-D cache misses per KI and CPI 0.918

L2 misses per KI and CPI 0.964

0 5 10 15 20

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Misses per Kinst

36.73

(a)

0 5 10 15 20

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.tw olf

Misses per Kinst

(b)

Figure 2: (a) Shows the L2 cache misses per 1000

instructions for CPU2006 integer benchmarks and (b)

shows the same for CPU2000 integer benchmarks

3. Macro-fusion and Micro-op fusion in the Core

Microarchiture based processors

There are several new architectural features that were

added in the Core Microarchiture based processors that are

different as compared to their predecessors. One such feature

is “Macro-fusion” [5][7]. Macro-fusion is a new feature for the

Core microarchitecture, which is designed to decrease the

number of micro-ops in the instruction stream. The hardware

can perform a maximum of one macro-fusion per cycle. Select

pairs of compare and branch instruction are fused together

during the pre-decode phase and then sent through any one of

the four decoders. The decoder then produces a micro-op from

the fused pair of instructions. Although it does require some

0 5 10 15 20 25

400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Mispredictions per Kinst

(a)

0 5 10 15 20 25

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.tw olf

Mispredictions per Kinst

(b)

Figure 3: (a) Shows the branch mispredictions per 1000

instructions for CPU2006 benchmarks and (b) shows the same

for CPU2000 benchmarks

additional hardware, macro-fusion allows a single decoder to

process two instructions in one cycle, save entries in the

reorder buffer and reservation stations, and allow an ALU to

process two instructions at once.

Woodcrest also has another type of fusion called the

“Micro-op fusion” which is the enhanced version of the

previous fusion that was first introduced on Pentium M [12].

Micro-op fusion [5] [7], which takes place during the decode

phase, works by creating a pair of fused micro-ops which are

tracked as a single micro-op by the reorder buffer. These

fused pairs, which are typically composed of a store/load

address micro-op and a data micro-op are issued separately

and can be executed in parallel. The advantage of micro-op

fusion is that the reorder buffer is able to issue and commit

more micro-ops. The remainder of this section describes the

methodology of our experiment and then discusses the results.

3.1 Methodology

The cycle count, total fusion (Macro and Micro-op fusion)

and macro-fusion for the Core microarchitecture based

processor (Woodcrest) were collected using performance

counters while running the SPEC CPU2006 benchmarks. The

configuration of the Woodcrest processor system is as follows:

Tyan S5380 Motherboard with two Xeon 5160 CPUs running

at 3.0GHz (although the workload is single threaded) with 4

1GB memory DIMMS at 667MHz. The benchmarks were

compiled using Intel C Compiler for 32-bit applications,

Version 9.1 and Intel Fortran Compiler for 32-bit applications,

Version 9.1. Micro-op fusion was calculated by subtracting the

number of macro-fused micro-ops from the total number of

fused micro-ops. The time in cycles for the processor code-

named Yonah (Intel Core Duo T2500) which is the

predecessor of Woodcrest was collected from results published

on the SPEC CPU2006 website. The reason why we pick

Yonah as our baseline is that it does not have macro-fusion

and includes similar architectural features as Woodcrest [5][7].

NetBurst architecture based processor (Intel Pentium Extreme

Edition 965) was used as the baseline for the micro-op fusion

as well has macro-fusion studies since it does not have both

the features and was compared to Woodcrest. The time in

cycles for Netburst architecture was also calculated using data

from the SPEC website. The number of cycles for each

benchmark was calculated based on the runtime for that

benchmark and the frequency of the machine. The increase in

performance between machines was calculated by subtracting

the number of cycles for the benchmark on the Woodcrest

machine from the number of cycles on its predecessor and then

dividing the result by the original number of cycles. This

increase in performance was then used to correlate with the

percentage of fused operations. The results of this experiment

are discussed in the next subsection.

Table 3: Percentage of fused operations for integer

programs of CPU2006

Benchmark Macro Micro Total

400.perlbench 12.18% 19.68% 31.86%

401.bzip2 11.84% 18.95% 30.79%

403.gcc 16.18% 18.39% 34.57%

429.mcf 13.93% 21.40% 35.33%

445.gobmk 11.33% 20.19% 31.52%

456.hmmer 0.13% 23.30% 23.43%

458.sjeng 14.33% 18.32% 32.65%

462.libquantum 1.59% 13.92% 15.51%

464.h264ref 1.51% 23.45% 24.96%

471.omnetpp 8.19% 23.87% 32.06%

473.astar 12.86% 14.20% 27.06%

483.xalancbmk 15.98% 21.12% 37.10%

3.2 Results

Table 3 and Table 4 show the percentage of fused

operations for the integer and floating benchmarks in the

CPU2006 suite. We can see that the total fusion seen in integer

benchmarks is much more than what is seen in the floating

point benchmarks. Macro-fusion observed in floating point

benchmarks is also drastically less than the integer

benchmarks.

Table 4: Percentage of fused operations for floating point

programs of CPU2006

Benchmark Macro Micro Total

416.gamess 2.18% 23.58% 25.76%

433.milc 0.35% 17.82% 18.17%

434.zeusmp 0.09% 16.32% 16.41%

435.gromacs 0.71% 15.58% 16.29%

436.cactusADM 0.00% 24.14% 24.14%

437.leslie3d 0.70% 24.12% 24.82%

444.namd 0.36% 10.02% 10.38%

447.dealII 8.03% 22.98% 31.01%

450.soplex 5.10% 13.59% 18.69%

453.povray 4.40% 21.88% 26.28%

454.calculix 0.44% 19.67% 20.11%

459.GemsFDTD 0.38% 18.66% 19.04%

465.tonto 1.69% 24.35% 26.04%

470.ibm 0.22% 19.56% 19.78%

CPU2006 integer

-80%

-60%

-40%

-20%

0%

20%

40%

0% 5% 10% 15% 20% 25% 30%

% of fused micro-ops

%
in

c
re

a
s

e
 i
n

 p
e

rf
o

rm
a

n
c

e

 (a)

CPU2006 fp

0%

10%

20%

30%

40%

50%

60%

0% 5% 10% 15% 20% 25% 30%

% of fused micro-ops

%
 i
n

c
re

a
s

e
 i
n

 p
e

rf
o

rm
a

n
c

e

(b)

Figure 4: Percentage increase in performance and the

measured micro-op fusion for (a) CPU2006 integer

benchmarks and (b) CPU2006 fp benchmarks

Micro-op Fusion

All of the floating point and integer benchmarks exhibit a high

percentage (10-25%) of micro-fused micro-ops. However, in

our study we did not find a strong correlation between the

percentage increase in performance (calculated as described in

Section 3.1) and the measured micro-op fusion. For this

reason, the remainder of the fusion results will focus on macro-

fusion. Figure 4 (a) and (b) show the plots where we can see

that the increase in performance does not correlate well with

the percentage of fused micro-ops. For this analysis we used

the increase in performance from the NetBurst architecture to

the Core microarchitecture based processor.

CPU2006 integer

-80%

-60%

-40%

-20%

0%

20%

40%

0% 5% 10% 15% 20%

% of fused m acro-fused ops

%
 i

n
c

re
a

s
e

 i
n

 p
e

rf
o

rm
a

n
c

e

(a)

CPU2006 fp

-200%

-150%

-100%

-50%

0%

50%

0% 2% 4% 6% 8% 10%

% of fused m acro-fused ops

%
 i

n
c

re
a

s
e

 i
n

 p
e

rf
o

rm
a

n
c

e

(b)

Figure 5: Percentage of increase in performance and

percentage fused macro-ops for Woodcrest over Yonah for (a)

CPU2006 integer benchmarks and (b) CPU2006 floating point

benchmarks.

Macro-fusion
Figure 5 shows the plot of percentage increase in performance

and the percentage of macro-fused operations for Woodcrest

over Yonah. As Table 2 indicates, the percentage of macro-

fused operations is below 3% for 11 of the 14 floating point

benchmarks analyzed. When studying correlation between the

increase in performance and macro-fusion, we found almost no

correlation for the floating point benchmarks, which may be

due to the low levels of macro-fusion exhibited by the floating

point benchmarks. The percentage of macro-fused operations

was considerably greater for the integer benchmarks with 9 of

the 12 benchmarks exhibiting levels above 8% and show

strong correlation. To strengthen our analysis we did a

similar experiment for Woodcrest over the NetBurst

architecture based processor and the results are shown in

Figure 6 (a) and (b).

CPU2006 integer

-40%

-20%

0%

20%

40%

60%

80%

0% 5% 10% 15% 20%

% of fused m acro-fused ops

%
 i

n
c

re
a

s
e

 i
n

 p
e

rf
o

rm
a

n
c

e

(a)

CPU2006 fp

-160%

-120%

-80%

-40%

0%

40%

80%

0% 2% 4% 6% 8% 10%

% of fused m acro-fused ops

%
 i

n
c

re
a

s
e

 i
n

 p
e

rf
o

rm
a

n
c

e

(b)

Figure 6: Percentage of increase in performance and

percentage fused macro-ops for Woodcrest over NetBurst

architecture based processor for (a) CPU2006 integer

benchmarks and (b) CPU2006 floating point benchmarks.

We see good correlation between macro-fusion and the

increase in performance for integer benchmarks and very weak

correlation for floating point.

We also analyze the data to see why the integer

benchmarks have a higher percentage of macro-fused

operations than the floating point benchmarks. Since macro-

fusion involves fusing a compare instruction with the

following jump, we see if the percentage of branch instruction

correlates with the percentage of macro-fused ops. Figure 7

shows the plot of this analysis with percentage of macro-fused

ops against the percentage of branches within a benchmark for

the SPEC CPU2006 integer benchmarks. We see a good

correlation in Figure 7 and hence can conclude that the

opportunity of macro-fusion offered by integer benchmarks is

quite uniform and is directly proportional to the percentage of

branch operations. There are however three benchmarks for

which the correlation is quite weak, 456.hmmer,

462.libquantum and 464.h264ref.

0%

4%

8%

12%

16%

20%

0% 5% 10% 15% 20% 25% 30%

% of branch operations

%
 o

f
m

a
c
ro

 f
u

s
e
d

 o
p

e
ra

ti
o

n
s

SPEC CPU2006 integer benchmarks

Figure 7: Percentage of macro-fused operations and

percentage of branch operations

4. Related Work

New machines and new benchmarks often trigger

characterization research analyzing performance

characteristics and bottlenecks. Seshadri et.al [2] use program

characteristics measured using performance counters to

analyze the behavior of java server workloads on two different

PowerPC processors. Luo et.al. [1] extend the work in [1] with

the data measured on three different systems to characterize

internet server benchmarks like SPEC Web99, Volanomark

and SPECjbb2000. They also compared the characteristics of

the internet servers with the compute intensive SPEC

CPU2000 benchmarks to evaluate the impact of front-end and

middle-tier servers on modern microprocessor architectures.

Bhargava et.al. [3] evaluate the effectiveness of the x86

architecture’s multimedia extension set (MMX) on a set of

benchmarks. They found that the range of speedup for the

MMX version of the benchmarks ranged from less than 1 to

6.1. This work evaluates the new features added to x86

architecture and also gives an insight as to why there was an

improvement in performance using the Intel VTune profiling

tool.

There are numerous technically strong and resourceful

editorials available on the World Wide Web. We referred to

[5][6][7][8][9][10] for information about fusion. But as far as

we know this paper is the first of its kind analyzing

performance improvement of fusion using measurement on

actual machines with and without fusion.

5. Conclusion

Based on characterization of SPEC CPU benchmarks on

the Woodcrest processor, the new generation of SPEC CPU

benchmarks (CPU2006) stresses the L2 cache more than its

predecessor CPU2000. This supports the current necessity for

benchmarks based on trends seen in the latest processors

which have large on die L2 caches. Since SPEC CPU suites

contain real life applications, this result also suggests that the

current compute intensive engineering and science applications

show large data footprints. The increased stress on the L2

cache will benefit researchers who are looking for real-life,

easy-to-run benchmarks which stress the memory hierarchy.

However, we noticed that the behavior of branch operations

has not changed significantly in the new applications.

The paper also analyzes the effect of a new feature called

“Macro-fusion” and “Micro-op fusion” of the Woodcrest

processor on its performance. We perform correlation analysis

of the increase in performance of the SPEC CPU2006

benchmarks on a processor with both types of fused

operations. The results of the correlation analysis showed that

the increase in performance of Woodcrest over Yonah as well

as NetBurst architecture correlated well with the amount of

macro-fusion seen in the integer benchmarks of CPU2006. For

floating benchmarks the amount of macro-fusion observed was

very low and did not correlate well with the effective increase

in performance. Although, we saw interesting results for

macro-fusion, we did not find significant correlation between

increase in performance and micro-op fusion. For future work,

it will be interesting to see how the other new architecture

features in the Woodcrest processor correlate with the increase

in performance and quantify the contribution of each of them.

Acknowledgments:
The University of Texas researchers are supported in part

by National Science Foundation under grant number 0429806

and an IBM University Partnership Award.

REFERENCES

[1] Y. Luo, J. Rubio, L. John, P. Seshadri, and A. Mericas

“Benchmarking Internet Servers on Superscalar Machines”

IEEE Computer. pp 34-40. February 2003

[2] P. Seshadri, A. Mericas “Workload Characterization of

Multithreaded Java Servers on Two PowerPC

Processors” 4th Annual IEEE International Workshop

on Workload Characterization. pp 36-44. December

2001

[3] R. Bhargava, R. Radhakrishnan, B. L. Evans, and L.

John “Characterization of MMX Enhanced DSP and

Multimedia Applications on a General Purpose

Processor” Workshop on Performance Analysis and its

Impact on Design. pp 16-23. June 1998

[4] SPEC Benchmarks, http://www.spec.org

[5] D. Kanter “Intel’s Next Generation Microarchitecture

Unveiled” Real World Technologies. March 2006,

http://www.realworldtech.com.

[6] “Intel Core Microarchitecture” Intel,

http://www.intel.com.

[7] J. Stokes “Into the Core: Intel’s Next-Generation

Microarchitecture” Arstechnica. April 2006,

http://arstechnica.com.

[8] S. Wasson “Intel Reveals details of new CPU Design”

The Tech Report. August 2005,

http://www.techreport.com.

[9] W. Gruener “Woodcrest launches Intel into a New Era”

TG Daily. June 2006, http://www.tgdaily.com.

[10] W. Gruener “AMD Intros new Opertons and promises

68W Quad-Core CPUs” TG Daily. August 2006,

http://www.tgdaily.com.

[11] J. De Gelas “Intel Core versus AMD’s K8 Architecture”

AnandTech. May 2006, http://www.anandtech.com.

[12] “Intel Core Microarchitecture” PCtech guide.

September 2006,

http://www.pctechguide.com/21Architecture_Intel_Cor

e.htm

