

Abstract—Performance benchmarks have a limited lifetime of

currency and relevance. This paper discusses the process used in
updating SPECjbb2000 to SPECjbb2005 and presents some
initial reflections on the implications and effects of the update
now active.

Index Terms—Performance, Benchmarks, SPEC,
SPECjbb2000, SPECjbb2005

I. BENCHMARKS AND THEIR ROLE

Performance benchmarks play a number of roles.
For computer system customers, they can serve as tools to

help make purchasing decisions, such as choosing what
vendor to favor with hardware or software purchases, or
determining how much hardware and software is required for
their planned purposes.

Academic users can use this to design and evaluate
prototype problem solutions, with the criterion of success
being performance change achieved on the given benchmark.
Such a criterion may play a key role in having the ideas from
the research community taken seriously and implemented in
some products.

For hardware or software vendors, there is also a variety of
purposes, depending on the role played within the company. A
development team will typically use benchmarks in one of two
standard ways. Benchmarks will be used to help measure the
change in performance of a product across releases, where
typically the objective will be not to degrade any key
benchmarks, and additionally probably to improve the
performance of other benchmarks.

That same development team has likely been working to
improve the performance on some key benchmarks, and hence
using those benchmarks to guide its design and
implementation effort.

Another key stakeholder in the performance benchmarking
world is the performance marketing team at a vendor

 Manuscript received November 28, 2006.
 Dr. Alan Adamson works on Java performance in the IBM Toronto Lab,

8200 Warden Ave., Markham, ON, Canada L6G 1C7 (e-mail:
adamson@ca.ibm.com).

 David Dagastine works on Java performance for Sun Microsystems in
Burlington, MA. (e-mail: david.dagastine@sun.com).

 Stefan Särne works on Java performance for BEA Systems in
Stockholm, Sweden. (e-mail: stefan.sarne@bea.com).

company. That team will be endeavoring to use performance
benchmarking results using its products to convince customers
to purchase its own products in preference to those of other
vendors.

It is because of the importance and consequences of all
these stakeholder behaviors that SPEC1 was formed to
emphasize the creation of “realistic, standardized
performance tests”, reflecting a key realization “that an ounce
of honest data was worth more than a pound of marketing
hype” (http://www.spec.org/spec/).

One other key realization in SPEC is that benchmarks have
a lifetime, and the organization has emphasized regular
updating and replacement of existing benchmarks. This paper
discusses the concept of the lifetime of a benchmark. We use
the specific example of SPECjbb2000, and its successor
benchmark SPECjbb2005, released last year, as were all
active developers of this successor benchmark.

The next section discusses the lifetime of SPECjbb2000 and
its impact on all stakeholders during its lifetime. After that we
describe why the Java subcommittee decided a revision for
SPECjbb2000 was due, and what the goals of the effort were.
We then describe how successfully the new benchmark met its
objectives. Finally, we describe the impact of SPECjbb2005
on the marketplace and its stakeholders so far in its short life.

II. THE INFLUENCE OF SPECJBB2000

SPECjbb2000 was SPEC’s first offering of a benchmark for
server-side Java. It was based on an IBM internal benchmark,
pBoB, itself based on an internal earlier benchmark intended
to test a C++ runtime library.

The benchmark simulates a three-tier web application, with
all of the clients, the middle tier, and the database, running on
a single system in a single address space; the database is in-
memory, and there is no application server, simply Java
application code executing transactions, so the benchmark has
quite different characteristics from SPEC’s JEE benchmark
SPECjAppServer2004 (see
http://www.spec.org/jAppServer2004/). 366 SPECjbb2000
results were published in the benchmark’s lifetime (24 in
2000, 58 in 2001, 57 in 2002, 52 in 2003, 39 in 2004, 122 in
2005, and 14 in the single review cycle in 2006). Overall

1 SPEC® and the benchmark names SPECjvm®, SPECjbb® and

SPECjAppServer® are registered trademarks of the Standard Performance
Evaluation Corporation. All results referred to in this paper are as of January
15, 2007 and can be found at http://www.spec.org.

Alan Adamson, IBM Canada Ltd., David Dagastine, Sun Microsystems, and Stefan Sarne, BEA Systems

SPECjbb2005 – A Year in the Life of a
Benchmark

leading scores were established in June 2000, April 2001,
October 2001, January 2002, March 2002, May 2002, August
2002, May 2003, November 2004, January 2005, and January
2006, with scores varying form the initial 80,348
SPECjbb2000 bops, to the final 2,505,420 SPECjbb2000
bops.

While very high scores were largely achieved by the use of
very many processors on ever faster hardware, this strategy
also created a requirement on the JVMs to be able to support
efficient garbage collection on these larger systems, and much
development effort saw significant improvement of garbage
collectors.

The synchronization requirements in the benchmark saw
further refinement of previous earlier strategies implemented
by VM teams to mitigate the cost of locking.

On Intel-based systems, the one platform supported by all
the three major VM technologies being used in published
scores, the publication features a fairly aggressive history of
two of the vendors producing successive results leapfrogging
one another’s results, while the other began to question the
real value of the benchmark as measure of customer-relevant
performance.

III. WHAT WAS WRONG WITH SPECJBB2000

During 2004 there was a recognition that there would be
benefit in updating SPECjbb2000 to encourage new JVM
improvements, which would be useful for customers of all
providers. There were clear problems with SPECjbb2000 that
encouraged this move, with a goal of coming closer to real
Java application usage.

SPECjbb2000’s roots in C++ became more and more
visible over the years, as more Java applications also required
attention; the problems of optimizing more object-oriented
Java code were not well reflected in the efforts spent on
SPECjbb2000.

It was unreasonable for the financial calculations in the
benchmark to be done in float when Java featured a
BigDecimal library, part of the language intended to support
exactly such computation. Also, rather than use Java’s
collection libraries to implement what were the collection
types in the benchmark, the existing code used a roll-your-
own persistence framework.

There was no XML processing in the benchmark, nor any
standard logging of transactions.

SPECjbb2000 was unreasonably parallel in implementation
too, as threads run in it with little dependence on shared data.
Another thread-related problem was a specific ‘fairness’
requirement that was becoming more difficult to meet with the
appearance of hardware multi-threading and multi-core
systems.

There was also a requirement related to hitting peak
performance that was becoming problematic, in that rather
arbitrary indeterminacies could increase the length of a run
unexpectedly; on large systems, this might mean it could take
many runs to achieve a satisfactory result, simply adding to

already existing problems creating submissions on large
systems. Key among those was a simple hard limit on the
number of cores used in a run at 128 (and even for that
number a penalty in the scoring formula).

There was another serious problem related to garbage
collection (especially on on large systems); this was the
regular invocation of calls to System.gc() during a benchmark
run, but not part of the measured parts of the run, so not being
reflected in a final score. These calls allowed vendors to tune
garbage collection specifically to this pattern, and hide
expensive parts of garbage collection in the System.gc() calls.

A final concern was that on a large system the time to run
the benchmark to produce a submission was very long (and
this was becoming a serious burden when combined with the
possible need to do a few runs to get a sensible result).

IV. OBJECTIVES AS WE DEVELOPED SPECJBB2005

The goals when developing SPECjbb2005 were to adjust
the benchmark to current standards for a Java industry that has
greatly matured. It should use up to date techniques and
building blocks, both with representative code and use the
extensive runtime libraries available in Java implementations.

 A key goal was that it remain a Java server benchmark and
so occupy the niche between SPECjvm98 and
SPECjAppServer2004 and continue to be a load-and-go
benchmark, easy to run and publish with.

A number of items where identified as things that would
make us reach this goal.

More object-oriented design with a class and an interface
hierarchy to reflect current techniques should be used. This
pattern should apply through the various transactions
performed in the middle tier and abstract the database tier
behind a storage interface that will make it possible to change
which map to use in the tier without knowledge from the
application.

The internal database structures, for example
longStaticBTree, should be replaced with commonly used
collection classes in java.util in order to drive vendors to
improve the JITs for frequently used code and in order to
improve the class libraries themselves.

 The required JDK level should change to 5.0, to use the
recent standards and the common patterns the new language
features introduce.

The representation for monetary calculations should change
from float to BigDecimal, targeting both common practice and
intended runtime library usage.

JSE standard logging should play a role in the benchmark,
to enable easy development of the benchmark and more
importantly, to execute code with logging inserted but not
enabled, as the industry does. This would also help customers
understand the benchmark code, should they care to.

XML processing should be included. Two areas where
identified for this, the first is to replace the display screen
which is a simulation of terminal output, with an XML
document, created with DOM. The second place, which also

tried to address the too parallel nature of the benchmark, was
to split the database tier from the middle tier and communicate
with XML messages via concurrent queues between them.

GC should no longer have “free time”, so System.gc() calls
between iterations should be removed, and also warmup time
per iteration, to address the pattern that applications are up
and running and adjusting as work is loaded on the system.
The runtime should also be adjusted, a longer measurement
period, to prevent then concept of “lucky runs” is beneficial.

Object tracking done in the persistence layer in
SPECjbb2000 should also be removed, since free() isn’t a
concept of Java. The concept of multiple JVM mode, to
improve benchmarking on large systems, by reducing the
runtime, might be included.

V. SPECJBB2005 SUCCESSES AND FAILURES

 As with any benchmark development project there are
several successes and failures identified after release.
 The refactoring of the benchmark to more closely follow
the object oriented programming model was a success. A key
part of this work was replacing the internal data structures in
SPECjbb2000 (most notable the elusive longStaticBTree) with
the Java SE collections HashMap and TreeMap. This had
several interesting benefits, but most of all optimizations
targeting these data structures benefit a large array of real-
world applications, not just competitive benchmarks.
 Targeting SPECjbb2005 as a Java 5 benchmark was a
success. Having Java 5 features as part of the benchmark
allowed performance issues surrounding these features to be
quickly identified. This also helped to promote the Java
platform and was an added requirement for JVM vendors to
deliver a Java 5 solution quickly. Potential performance
bottlenecks identified by using Java 5 features in
SPECjbb2005 continue to have a direct impact on the
performance of all Java 5 applications.
 The removal of the System.gc() between each measurement
interval was a significant success. Major garbage collections
and GC performance are now part of the benchmark and
prevents JVM vendors from targeting the explicit GC call for
aggressive optimizations.
 The modification of the benchmark runtime and the notion
of expected peak has been a success. The new benchmark
runtime with separate warm-up and measurement intervals
more closely models the lifecycle of a Java server application
and makes the benchmark run more stable and predictable. A
favorite amongst Java performance engineers who frequently
run this benchmark.
 The SPECjbb2005 multi-VM mode can be viewed as both a
success and a failure. It is successful at reducing the run time
on large systems and providing a usage scenario that reflects
customer use cases on large systems. Multiple JVMs have
been traditionally used in large batch application deployments
and application servers and the multi-VM mode in
SPECjbb2005 allowed the benchmark to address this usage
scenario.

 The failure of the multi-VM mode involves how it has been
used for submissions. There are many benchmark
submissions using the multi-VM mode on small system
configurations with as little as 2 CPUs. Multi-VM
submissions on small systems removes many aspects of JVM
scaling from the workload. Unfortunately many of the
submissions on small systems were done to avoid the memory
latency overhead suffered by single JVM configurations on
heavily NUMA systems. The configuration was also used to
avoid GC overhead. The multi-VM mode of SPECjbb2005
provided an easy workaround for these problems and allowed
fast benchmark results to be submitted in the near term. The
bench-marketing concerns of the multi-VM mode were largely
addressed by requiring both the SPECjbb2005 bops and the
SPECjbb2005 bops/JVM metric, however the path in which
the multi-VM mode has followed is disappointing since
significant JVM optimizations have been avoided or
postponed because marketing goals have been reached easily
through use of the multi-VM mode.
 The high allocation rate in SPECjbb2005 is also both a
failure and a success. Its a success because it models a
common bottleneck in many real-world Java applications.
Many Java applications and benchmarks
(SPECjappserver2004) have high allocation rates, and
including this bottleneck in SPECjbb2005 has allowed JVM
developers to address this issue. The high allocation rate is a
failure mostly because it can be isolated to a small amount of
code and is ripe for aggressive point optimizations that may
have little positive impact on customer applications.

VI. THE YEAR AND A HALF OF SPECJBB2005 CURRENCY

SPECjbb2005 has become an interesting benchmark for
two reasons. It has been the common competitive ground for
the major JVM vendors and results from different vendors
have topped each other over the year, the throne has been
passed on more than once. The benchmark has also served an
important role in product advertisement, especially for
hardware vendors where product launches quotes the
SPECjbb2005 score and models are compared with results.
The reason it has been able to get this role is that it combines
both ease of use and relevance in the workload.

The performance on the benchmark has significantly
improved in this one and a half years and the benchmark has
been an important driver for this in itself. Comparing four-
core results to see the improvement on the benchmark, the
first submission was at 37,034 SPECjbb2005 bops, while
current greatest 4-core result is at 130,589 SPECjbb2005
bops, an improvement of more than 250%. Another
comparison, in one way less apples to apples, but in in another
way more relevant, is a 2 socket comparison, both being entry
level servers. In this space the first submission was at 24208
SPECjbb2005 bops, while current lead in this category is at
210065 SPECjbb2005 bops, 105033 SPECjbb2005
bops/JVM, which yields a performance increase of more than
750%.

The performance increase is not all JVM performance and
to state all was thanks to SPECjbb2005 would be to be even
further from the truth. But the truth is that significant JVM
performance improvements have been driven by this
benchmark, improvements that yield increases on other
benchmarks as well, sometimes not as much, sometimes more.

There are several important improvements that have added
up to the performance increase, many of them can be found in
similar fashions in all JVMs, some in a subset of them. Below
a few of them are mentioned with a slight description of them.
Garbage collection (GC) improvements are key, with a focus
on GC throughput to achieve shorter pause times both for
young space and old space collection, driving parallelization
of the GC phases and also forcing a tricky balance on what is
worth to spend time on inside a collection and what is not,
regarding object layout, locality and heap fragmentation. It is
interesting to note that both single-spaced and generational
collectors have performed well on this workload.

Large page utilization, taking advantage of the possibility to
use multiple page sizes in the same process is an ideal
optimization for a JVM, since it manages a large amount of
memory in process, shared by application threads. By using
large pages the TLB cache misses are reduced, which in turn
yields performance by reduced stalls. This is a technique used
prior to SPECjbb2005, but was made a common option for it
and is equally beneficial for workloads outside this
benchmark.

The use of a noncontiguous heap, accepting a heap split up
in several parts, to be able to use a larger heap on platforms
where the address space is split up from the process start, has
been of value.

BigDecimal library class improvements to the library class,
which specially treat values that fit in a long while possible
and then fall back to the default representation if needed, have
produced significant improvements in this benchmark, and are
of clear general value.

HashMap library class improvements, in order to shorten
execution path, have proven to be significant.

Allocation prefetching, a memory enhancement driven by
the memory intensive workload with different impact on

different architectures, significantly improves performance for
applications with high allocation rate.

Locking improvements, reflecting the common case when
locks are not contended, allow the Java runtime the possibility
to adapt. In this common case a lock is not released until
another thread is trying to acquire it. While acquiring a lock at
this stage is more expensive, the benefit is that a lock that is
acquired again without interruption by the same thread does
not need any atomic instructions, an improvement ideal for the
multi core world.

Compressed references is another feature that is driven by
the memory intensive nature of the benchmark. In order not to
have to work with a with a full 64-bits reference on a 64-bit
platform, a 32-bits version is used to reduce the memory
overhead, which is possibly under the conditions that the heap
is less than or equal to the space of what that the reference still
can span. This optimization combines the benefits both from a
32-bit platform and a 64-bit platform to some extent.

And next to the explicit features mentioned, friction and
more friction are removed by the JITs in this workload,
friction that exists in applications out there.

The conclusion is that the benchmark has driven through a
lot of changes in only one year, good changes that are here to
stay.

