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SpMV

Sparse Matrix-(dense)Vector Multiply
Multiply a dense vector by a sparse matrix 

(one whose entries are mostly zeroes)
Why do we need a benchmark?

SpMV is an important kernel in scientific 
computation

Vendors need to know how well their 
machines perform it

Consumers need to know which machines to 
buy

Existing benchmarks do a poor job of 
approximating SpMV



  

Existing Benchmarks

The most widely used method for ranking 
computers is still the LINPACK benchmark, 
used exclusively by the Top 500 
supercomputer list

Benchmark suites like the High Performance 
Computing Challenge (HPCC) Suite seek to 
change this by including other benchmarks

Even the benchmarks in HPCC do not model 
SpMV however

This work is proposed for inclusion into the 
HPCC suite



  

Benchmarking SpMV is hard!

Issues to consider:
Matrix formats
Memory access patterns
Performance optimizations and why 

we need to benchmark them

Preexisting benchmarks that 
perform SpMV do not take all of 
this into account



  

Matrix Formats

We store only the nonzero entries 
in sparse matrices

This leads to multiple ways of 
storing the data, based on how we 
index it
Coordinate, CSR, CSC, ELLPACK,…

Use Compressed Sparse Row (CSR) 
as our baseline format as it 
provides best overall unoptimized 
performance across many 
architectures



  

CSR SpMV Example

(M,N) = (4,5)

NNZ = 8

row_start:

(0,2,4,6,8)

col_idx:

(0,1,0,2,1,3,2,4)

values:

(1,2,3,4,5,6,7,8)



  

Memory Access Patterns

 Unlike dense case, memory access patterns differ 
for matrix and vector elements
 Matrix elements: unit stride
 Vector elements: indirect access for the source vector 

(the one multiplied by the matrix)
 This leads us to propose three categories for 

SpMV problems:
 Small: everything fits in cache
 Medium: source vector fits in cache, matrix does not
 Large: source vector does not fit in cache

 These categories will exercise the memory 
hierarchy differently and so may perform 
differently



  

Examples from Three 
Platforms

Intel Pentium 4
2.4 GHz
512 KB cache

Intel Itanium 2
1 GHz
3 MB cache

AMD Opteron
1.4 GHz
1 MB cache

Data collected 
using a test suite 
of 275 matrices 
taken from the 
University of 
Florida Sparse 
Matrix Collection

Performance is 
graphed vs. 
problem size



  

horizontal axis = matrix dimension or 
vector length

vertical axis = density in nnz/row

colored dots represent unoptimized 
performance of real matrices



  

Performance Optimizations
 Many different optimizations possible
 One family of optimizations involves blocking the matrix to 

improve reuse at a particular level of the memory hierarchy
 Register blocking - very often useful
 Cache blocking - not as useful

 Which optimizations to use?
 HPCC framework allows significant optimization by the user - we 

don’t want to go as far
 Automatic tuning at runtime permits a reasonable comparison 

of architectures, by trying the same optimizations on each one
 We will use only the register-blocking optimization (BCSR), 

which is implemented in the OSKI automatic tuning system for 
sparse matrix kernels developed at Berkeley

 Prior research has found register blocking to be applicable to a 
number of real-world matrices, particularly ones from finite 
element applications



  

Both unoptimized and 
optimized SpMV matter

Why we need to measure optimized SpMV:
 Some platforms benefit more from performance tuning than 

others
 In the case of the tested platforms, Itanium 2 and Opteron 

gain vs. P4 when we tune using OSKI

Why we need to measure unoptimized SpMV:
 Some SpMV problems are more resistant to optimization
 To be effective, register blocking needs a matrix with a 

dense block structure
 Not all sparse matrices have one

Graphs on next slide illustrate this



  

horizontal axis = matrix dimension or 
vector length

vertical axis = density in nnz/row

blank dots represent real matrices 
that OSKI could not tune due to lack 
of a dense block structure

colored dots represent speedups 
obtained by OSKI’s tuning



  

So what do we do?

 We have a large search space of matrices to 
examine

 We could just do lots of SpMV on real-world 
matrices. However
 It’s not portable. Several GB to store and transport. Our 

test suite takes up 8.34 GB of space
 Appropriate set of matrices is always changing as 

machines grow larger

 Instead, we can randomly generate sparse 
matrices that mirror real-world matrices by 
matching certain properties of these matrices



  

Matching Real Matrices 
With Synthetic Ones

 Randomly generated matrices for each of 275 
matrices taken from the Florida collection

 Matched real matrices in dimension, density 
(measured in NNZ/row), blocksize, and 
distribution of nonzero entries

 Nonzero distribution was measured for each 
matrix by looking at what fraction of nonzero 
entries are in bands a certain percentage away 
from the main diagonal



  

Band Distribution 
Illustration

What proportion of the 
nonzero entries fall into 
each of these bands 1-5?

We use 10 bands instead of 
5, but have shown 5 for 
simplicity. 



  

In these graphs, real matrices are 
denoted by a red R, and synthetic 
matrices by a green S. Real 
matrices are connected by a line 
whose color indicates which matrix 
was faster to the synthetic matrices 
created to approximate them.



  



  

Remaining Issues
 We’ve found a reasonable way to model real 

matrices, but benchmark suites want less 
output. HPCC wants us to report only a few 
numbers, preferably just one

 Challenges in getting there
 As we’ve seen, SpMV performance depends greatly on 

the matrix, and there is a large range of problem sizes. 
How do we capture this all? Stats on Florida matrices:
Dimension ranges from a few hundred to over a million
NNZ/row ranges from 1 to a few hundred

 How to capture performance of matrices with small 
dense blocks that benefit from register blocking?

 What we’ll do:
 Bound the set of synthetic matrices we generate
 Determine which numbers to report that we feel 

capture the data best



  

Bounding the Benchmark Set
 Limit to square matrices
 Look over only a certain range of problem dimensions 

and NNZ/row
 Since dimension range is so huge, restrict dimension to 

powers of 2
 Limit blocksizes tested to ones in {1,2,3,4,6,8} x 

{1,2,3,4,6,8}
 These were the most common ones encountered in prior 

research with matrices that mostly had dense block 
structures

 Here are the limits based on the matrix test suite:
 Dimension <= 2^20 (a little over one million)
 24 <= NNZ/row <= 34 (avg. NNZ/row for real matrix test 

suite is 29)
 Generate matrices with nonzero entries distributed 

(band distribution) based on statistics for the test suite 
as a whole



  

Condensing the Data

 This is a lot of data
 11 x 12 x 36 = 4752 matrices to run

 Tuned and untuned cases are separated, as they 
highlight differences between platforms
 Untuned data will only come from unblocked matrices
 Tuned data will come from the remaining (blocked) 

matrices

 In each case (blocked and unblocked), report the 
maximum and median MFLOP rates to capture 
small/medium/large behavior

 When forced to report one number, report the 
blocked median



  

Output

Unblocked Blocked
Max Median Max Median

Pentium 4 699 307 1961 530
Itanium 2 443 343 2177 753
Opteron 396 170 1178 273

(all numbers MFLOP/s)



  

How well does the 
benchmark approximate 
real SpMV performance? 

These graphs show the 
benchmark numbers as 
horizontal lines versus the 
real matrices which are 
denoted by circles.  



  



  

Output

Matrices generated by the benchmark 
fall into small/medium/large categories 
as follows:

Pentium 4 Itanium 2 Opteron

Small 17% 33% 23%

Medium 42% 50% 44%

Large 42% 17% 33%



  

One More Problem

Takes too long to run:
Pentium 4: 150 minutes
Itanium 2: 128 minutes
Opteron: 149 minutes

How to cut down on this? 
HPCC would like our 
benchmark to run in 5 minutes



  

Test fewer problem dimensions
The largest ones do not give any extra 

information
Test fewer NNZ/row

Once dimension gets large enough, 
small variations in NNZ/row have little 
effect

These decisions are all made by a 
runtime estimation algorithm

Benchmark SpMV data supports 
this

Cutting Runtime



  

Sample graphs of benchmark SpMV for 1x1 
and 3x3 blocked matrices



  

Output Comparison

Unblocked Blocked
Max Median Max Median

Pentium 4 692 362 1937 555
(699) (307) (1961) (530)

Itanium 2 442 343 2181 803
(443) (343) (2177) (753)

Opteron 394 188 1178 286
(396) (170) (1178) (273)



  

Runtime Comparison

Full Shortened
Pentium 4 150 min 3 min
Itanium 2 128 min 3 min
Opteron 149 min 3 min



  

Conclusions and Directions 
for the Future

 SpMV is hard to benchmark because performance 
varies greatly depending on the matrix

 Carefully chosen synthetic matrices can be used to 
approximate SpMV

 A benchmark that reports one number and runs 
quickly is harder, but we can do reasonably well by 
looking at the median

 In the future:
 Tighter maximum numbers
 Parallel version

 Software available at http://bebop.cs.berkeley.edu


